Ngân hàng bài tập

Toán học

S

Trong không gian \(Oxyz\), cho hai đường thẳng \(d_1\colon\begin{cases}
x=1+t\\ y=2-t\\ z=3+2t\end{cases}\) và \(d_2\colon\dfrac{x-1}{2}=\dfrac{y-m}{1}=\dfrac{z+2}{-1}\) (với \(m\) là tham số). Tìm \(m\) để \(d_1\) và \(d_2\) cắt nhau.

\(m=9\)
\(m=4\)
\(m=5\)
\(m=7\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\begin{cases}x=1\\ y=1+t\\ z=-1+t\end{cases}\) và hai mặt phẳng \((P)\colon x-y+z+1=0\), \((Q)\colon2x+y-z-4=0\). Khẳng định nào sau đây đúng?

\(d\parallel(P)\)
\(d\parallel(Q)\)
\((P)\cap(Q)=d\)
\(d\bot(P)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho hai đường thẳng \(d_1\colon\dfrac{x-1}{2}=\dfrac{y}{1}=\dfrac{z+2}{-2}\) và \(d_2\colon\dfrac{x+2}{-2}=\dfrac{y-1}{-1}=\dfrac{z}{2}\). Xét vị trí tương đối của \(d_1\) và \(d_2\).

Chéo nhau
Trùng nhau
Song song
Cắt nhau
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho điểm \(M(1;0;3)\) và đường thẳng \(\Delta\colon\dfrac{x-2}{1}=\dfrac{y+1}{2}=\dfrac{z-2}{-2}\). Tính khoảng cách từ điểm \(M\) đến đường thẳng \(\Delta\).

\(\dfrac{\sqrt{34}}{3}\)
\(\dfrac{\sqrt{26}}{3}\)
\(\dfrac{\sqrt{10}}{3}\)
\(\sqrt{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\begin{cases}
x=1-t\\ y=2+2t\\ z=3+t\end{cases}\) và mặt phẳng \((P)\colon x-y+3=0\). Tính số đo góc giữa đường thẳng \(d\) và mặt phẳng \((P)\).

\(60^\circ\)
\(30^\circ\)
\(120^\circ\)
\(45^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x-1}{3}=\dfrac{y+2}{2}=\dfrac{z-3}{-4}\). Điểm nào sau đây không thuộc đường thẳng \(d\)?

\(Q(-2;-4;7)\)
\(N(4;0;-1)\)
\(M(1;-2;3)\)
\(P(7;2;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x+1}{2}=\dfrac{y}{1}=\dfrac{z-2}{-1}\) và hai điểm \(A(-1;3;1)\), \(B(0;2;-1)\). Gọi \(C(m;n;p)\) là điểm thuộc \(d\) sao cho diện tích của tam giác \(ABC\) bằng \(2\sqrt{2}\). Giá trị của \(T=m+n+p\) bằng

\(T=0\)
\(T=-1\)
\(T=-2\)
\(T=3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), hình chiếu của điểm \(M(-1;0;3)\) theo phương vectơ \(\vec{v}=(1;-2;1)\) trên mặt phẳng \((P)\colon x-y+z+2=0\) có tọa độ là

\((2;-2;-2)\)
\((-1;0;1)\)
\((-2;2;2)\)
\((1;0;-1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), tọa độ hình chiếu vuông góc của điểm \(A(3;2;-1)\) lên mặt phẳng \((\alpha)\colon x+y+z=0\) là

\((-2;1;1)\)
\(\left(\dfrac{5}{3};\dfrac{2}{3};-\dfrac{7}{3}\right)\)
\((1;1;-2)\)
\(\left(\dfrac{1}{2};\dfrac{1}{4};\dfrac{1}{4}\right)\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), tọa độ hình chiếu vuông góc của điểm \(M(1;0;1)\) lên đường thẳng \(\Delta\colon\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\) là

\((2;4;6)\)
\(\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
\((0;0;0)\)
\(\left(\dfrac{2}{7};\dfrac{4}{7};\dfrac{6}{7}\right)\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho đường thẳng \(\Delta\colon\dfrac{x-x_0}{a}=\dfrac{y-y_0}{b}=\dfrac{z-z_0}{c}\). Điểm \(M\) nằm trên \(\Delta\) có tọa độ là

\(M\left(a+x_0t;b+y_0t;c+z_0t\right)\)
\(M\left(at;bt;ct\right)\)
\(M\left(x_0+at;y_0+bt;z_0+ct\right)\)
\(M\left(x_0t;y_0t;z_0t\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), hình chiếu vuông góc của điểm \(A(-1;1;6)\) trên đường thẳng \(\Delta\colon\begin{cases}x=2+t\\ y=1-2t\\ z=2t\end{cases}\) là

\(M(3;-1;2)\)
\(H(11;-17;18)\)
\(K(2;1;0)\)
\(N(1;3;-2)\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x-1}{2}=\dfrac{y-3}{-1}=\dfrac{z-1}{1}\) cắt mặt phẳng \((P)\colon2x-3y+z-2=0\) tại điểm \(I(a;b;c)\). Khi đó \(a+b+c\) bằng

\(7\)
\(3\)
\(9\)
\(5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon(x-1)^2+(y-2)^2+(z+1)^2=6\) tiếp xúc với hai mặt phẳng \((P)\colon x+y+2z+5=0\), \((Q)\colon2x-y+z-5=0\) lần lượt tại các điểm \(A,\,B\). Độ dài đoạn thẳng \(AB\) bằng

\(3\sqrt{2}\)
\(2\sqrt{6}\)
\(2\sqrt{3}\)
\(\sqrt{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x-1}{2}=\dfrac{y+5}{-1}=\dfrac{z-3}{4}\). Phương trình nào dưới đây là hình chiếu vuông góc của đường thẳng \(d\) trên mặt phẳng \((P)\colon x+3=0\)?

\(\begin{cases}x=-3\\ y=-5-t\\ z=-3+4t\end{cases}\)
\(\begin{cases}x=-3\\ y=-5+t\\ z=3+4t\end{cases}\)
\(\begin{cases}x=-3\\ y=-5+2t\\ z=3-t\end{cases}\)
\(\begin{cases}x=-3\\ y=-6-t\\ z=7+4t\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho hai điểm \(E(-1;0;2)\) và \(F(2;1;-5)\). Phương trình chính tắc của đường thẳng \(EF\) là

\(\dfrac{x-1}{3}=\dfrac{y}{1}=\dfrac{z+2}{-7}\)
\(\dfrac{x+1}{3}=\dfrac{y}{1}=\dfrac{z-2}{-7}\)
\(\dfrac{x-1}{1}=\dfrac{y}{1}=\dfrac{z+2}{-3}\)
\(\dfrac{x+1}{1}=\dfrac{y}{1}=\dfrac{z-2}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), đường thẳng đi qua \(A(1;1;1)\) và vuông góc với mặt phẳng \((Oxy)\) có phương trình tham số là

\(\begin{cases}x=1+t\\ y=1\\ z=1\end{cases}\)
\(\begin{cases}x=1\\ y=1\\ z=1+t\end{cases}\)
\(\begin{cases}x=1+t\\ y=-1\\ z=1\end{cases}\)
\(\begin{cases}x=1+t\\ y=1+t\\ z=1\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho điểm \(A(1;2;3)\) và đường thẳng \(d\colon\dfrac{x-3}{2}=\dfrac{y-1}{1}=\dfrac{z+7}{-2}\). Đường thẳng đi qua \(A\), vuông góc với \(d\) và cắt trục \(Ox\) có phương trình là

\(\begin{cases}x=-1+2t\\ y=-2t\\ z=t\end{cases}\)
\(\begin{cases}x=1+t\\ y=2+2t\\ z=3+3t\end{cases}\)
\(\begin{cases}x=1+t\\ y=2+2t\\ z=3+2t\end{cases}\)
\(\begin{cases}x=-1+2t\\ y=2t\\ z=3t\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), viết phương trình đường thẳng giao tuyến của hai mặt phẳng \((P)\colon x+3y-z+1=0\), \((Q)\colon2x-y+z-7=0\).

\(\dfrac{x+2}{2}=\dfrac{y}{-3}=\dfrac{z+3}{-7}\)
\(\dfrac{x-2}{2}=\dfrac{y}{3}=\dfrac{z-3}{-7}\)
\(\dfrac{x}{-2}=\dfrac{y-3}{-3}=\dfrac{z-10}{7}\)
\(\dfrac{x-2}{-2}=\dfrac{y}{3}=\dfrac{z-3}{7}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), đường thẳng \(\Delta\) là giao tuyến của hai mặt phẳng \(\left(\alpha\right)\colon x+z-5=0\) và \(\left(\beta\right)\colon x-2y-z+3=0\) có phương trình là

\(\dfrac{x+2}{1}=\dfrac{y+1}{3}=\dfrac{z}{-1}\)
\(\dfrac{x+2}{1}=\dfrac{y+1}{2}=\dfrac{z}{-1}\)
\(\dfrac{x-2}{1}=\dfrac{y-1}{1}=\dfrac{z-3}{-1}\)
\(\dfrac{x-2}{1}=\dfrac{y-1}{2}=\dfrac{z-3}{-1}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự