Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
| $m=1$ | |
| $m=4$ | |
| $m=13$ | |
| $m=8$ |
Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.
| $m\geq2$ | |
| $m\leq2$ | |
| $m=2$ | |
| $m>2$ |
Cho hàm số $f(x)=\dfrac{x+m}{x+1}$ với $m$ là tham số thực. Tìm giá trị của $m$ thỏa mãn $\min\limits_{[1;2]}f(x)+\min\limits_{[1;2]}f(x)=\dfrac{16}{3}$.
| $m=5$ | |
| $m=\dfrac{5}{6}$ | |
| $m=-5$ | |
| $m=\dfrac{5}{3}$ |
Cho hàm số $f(x)=\dfrac{x+m}{x-1}$ với $m$ là tham số thực. Gọi $m$ là giá trị thỏa mãn $\min\limits_{[2;4]}=3$, mệnh đề nào sau đây là đúng?
| $3< m\leq4$ | |
| $1\leq m<3$ | |
| $m>4$ | |
| $m<-1$ |
Cho hàm số $f(x)=\dfrac{x-m^2}{x+8}$ với $m$ là tham số thực. Tìm giá trị lớn nhất của $m$ để hàm số có giá trị nhỏ nhất trên đoạn $[0;3]$ bằng $-2$.
| $m=-4$ | |
| $m=5$ | |
| $m=1$ | |
| $m=4$ |
Tìm các giá trị thực của tham số $m$ để hàm số $f(x)=-x^3-3x+m$ có giá trị nhỏ nhất trên đoạn $[-1;1]$ bằng $0$.
| $m=-4$ | |
| $m=-2$ | |
| $m=2$ | |
| $m=4$ |
Gọi $M$ và $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=\dfrac{2x+3}{x-2}$ trên đoạn $[0;1]$. Tính giá trị $M+m$.
| $-2$ | |
| $\dfrac{7}{2}$ | |
| $-\dfrac{13}{2}$ | |
| $-\dfrac{17}{3}$ |
Trên đoạn $[0;3]$, hàm số $y=-x^3+3x$ đạt giá trị lớn nhất tại điểm
| $x=0$ | |
| $x=3$ | |
| $x=1$ | |
| $x=2$ |
Cho $x,\,y$ là các số thực dương thỏa mãn $\log_2x+\log_2(2y)\geq\log_2\left(x^2+2y\right)$. Biết giá trị nhỏ nhất của biểu thức $P=x+2y$ có dạng $a\sqrt{b}+c$ trong đó $a,\,b,\,c$ là các số tự nhiên và $a>1$. Giá trị của $a+b+c$ bằng
| $11$ | |
| $13$ | |
| $9$ | |
| $7$ |
Cho hàm số $f\left(x\right)=\log_2^3x-\log_2x^3+m$ ($m$ là tham số thực). Gọi $S$ là tập hợp tất cả các giá trị của $m$ sao cho $\max\limits_{\left[1;4\right]}\left|f\left(x\right)\right|+\min\limits_{\left[1;4\right]}\left|f\left(x\right)\right|=6$. Tổng bình phương các phần tử của $S$ bằng
| $13$ | |
| $18$ | |
| $5$ | |
| $8$ |
Giá trị lớn nhất của hàm số $f\left(x\right)=\dfrac{2x+5}{x-2}$ trên đoạn $\left[3;6\right]$ là
| $f\left(5\right)$ | |
| $f\left(4\right)$ | |
| $f\left(6\right)$ | |
| $ f\left(3\right)$ |
Trên đoạn $[1;5]$, hàm số $y=x+\dfrac{4}{x}$ đạt giá trị nhỏ nhất tại điểm
| $x=5$ | |
| $x=2$ | |
| $x=1$ | |
| $x=4$ |
Một chất điểm chuyển động theo quy luật $s\left(t\right)=t^2-\dfrac{1}{6}t^3$ (m). Tìm thời điểm $t$ (giây) mà tại đó vận tốc $v$(m/s) của chuyển động đạt giá trị lớn nhất.
| $t=2$ | |
| $t=0.5$ | |
| $t=2.5$ | |
| $t=1$ |
Một chất điểm chuyển động trong $20$ giây đầu tiên có phương trình $s\left(t\right)=\dfrac{1}{12}t^4-t^3+6t^2+10t$, trong đó $t>0$ với $t$ tính bằng giây $\left(s\right)$ và $s\left(t\right)$ tính bằng mét. Hỏi tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất thì vận tốc của vật bằng bao nhiêu?
| $17$(m/s) | |
| $18$(m/s) | |
| $28$(m/s) | |
| $13$(m/s) |
Một chất điểm chuyển động theo quy luật $S=-\dfrac{1}{3}t^3+4t^2+\dfrac{2}{3}$ với $t$(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và $S$(mét) là quãng đường vật chuyển động trong thời gian đó. Hỏi trong khoảng thời gian $8$ giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của chất điểm là bao nhiêu?
| $86$(m/s) | |
| $16$(m/s) | |
| $\dfrac{2}{3}$(m/s) | |
| $43$(m/s) |
Một chất điểm chuyển động theo quy luật $S\left(t\right)=1+3t^2-t^3$. Vận tốc của chuyển động đạt giá trị lớn nhất khi $t$ bằng
| $t=2$ | |
| $t=1$ | |
| $t=3$ | |
| $t=4$ |
Một vật chuyển động theo quy luật $s=-\dfrac{1}{2}t^3+6t^2$ với $t$ (giây) là khoảng thời gian từ khi vật bắt đầu chuyển động và $s$ (mét) là quãng đường vật di chuyển trong thời gian đó. Hỏi trong khoảng thời gian $6$ giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất vật đạt được bằng bao nhiêu?
| $24$(m/s) | |
| $108$(m/s) | |
| $64$(m/s) | |
| $18$(m/s) |
Cho số phức $z=x+yi$ ($x\geq0$, $y\geq0$) thỏa $$\left|z-1+i\right|\leq\left|z+3-i\right|\leq\left|z-3-5i\right|.$$ Giá trị lớn nhất của $T=35x+63y$ bằng
| $70$ | |
| $126$ | |
| $172$ | |
| $203$ |
Cho hàm số $f(x)$, đồ thị của hàm số $y=f'(x)$ là đường cong trong hình bên.
Giá trị lớn nhất của hàm số $g(x)=f(2x)-4x$ trên đoạn $\left[-\dfrac{3}{2};2\right]$ bằng
| $f(0)$ | |
| $f(-3)+6$ | |
| $f(2)-4$ | |
| $f(4)-8$ |
Gọi $M,\,m$ lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số $f(x)=x^4-2x^2+3$ trên đoạn $[0;2]$. Tổng $M+m$ bằng
| $11$ | |
| $14$ | |
| $5$ | |
| $13$ |