Ngân hàng bài tập

Toán học: GTLN và GTNN

SS

Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.

$m=1$
$m=4$
$m=13$
$m=8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.

$m\geq2$
$m\leq2$
$m=2$
$m>2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\dfrac{x+m}{x+1}$ với $m$ là tham số thực. Tìm giá trị của $m$ thỏa mãn $\min\limits_{[1;2]}f(x)+\min\limits_{[1;2]}f(x)=\dfrac{16}{3}$.

$m=5$
$m=\dfrac{5}{6}$
$m=-5$
$m=\dfrac{5}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\dfrac{x+m}{x-1}$ với $m$ là tham số thực. Gọi $m$ là giá trị thỏa mãn $\min\limits_{[2;4]}=3$, mệnh đề nào sau đây là đúng?

$3< m\leq4$
$1\leq m<3$
$m>4$
$m<-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\dfrac{x-m^2}{x+8}$ với $m$ là tham số thực. Tìm giá trị lớn nhất của $m$ để hàm số có giá trị nhỏ nhất trên đoạn $[0;3]$ bằng $-2$.

$m=-4$
$m=5$
$m=1$
$m=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm các giá trị thực của tham số $m$ để hàm số $f(x)=-x^3-3x+m$ có giá trị nhỏ nhất trên đoạn $[-1;1]$ bằng $0$.

$m=-4$
$m=-2$
$m=2$
$m=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $M$ và $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=\dfrac{2x+3}{x-2}$ trên đoạn $[0;1]$. Tính giá trị $M+m$.

$-2$
$\dfrac{7}{2}$
$-\dfrac{13}{2}$
$-\dfrac{17}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trên đoạn $[0;3]$, hàm số $y=-x^3+3x$ đạt giá trị lớn nhất tại điểm

$x=0$
$x=3$
$x=1$
$x=2$
1 lời giải Sàng Khôn
Lời giải Tương tự
SSS

Cho $x,\,y$ là các số thực dương thỏa mãn $\log_2x+\log_2(2y)\geq\log_2\left(x^2+2y\right)$. Biết giá trị nhỏ nhất của biểu thức $P=x+2y$ có dạng $a\sqrt{b}+c$ trong đó $a,\,b,\,c$ là các số tự nhiên và $a>1$. Giá trị của $a+b+c$ bằng

$11$
$13$
$9$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f\left(x\right)=\log_2^3x-\log_2x^3+m$ ($m$ là tham số thực). Gọi $S$ là tập hợp tất cả các giá trị của $m$ sao cho $\max\limits_{\left[1;4\right]}\left|f\left(x\right)\right|+\min\limits_{\left[1;4\right]}\left|f\left(x\right)\right|=6$. Tổng bình phương các phần tử của $S$ bằng

$13$
$18$
$5$
$8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị lớn nhất của hàm số $f\left(x\right)=\dfrac{2x+5}{x-2}$ trên đoạn $\left[3;6\right]$ là

$f\left(5\right)$
$f\left(4\right)$
$f\left(6\right)$
$ f\left(3\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trên đoạn $[1;5]$, hàm số $y=x+\dfrac{4}{x}$ đạt giá trị nhỏ nhất tại điểm

$x=5$
$x=2$
$x=1$
$x=4$
2 lời giải Sàng Khôn
Lời giải Tương tự
S

Một chất điểm chuyển động theo quy luật $s\left(t\right)=t^2-\dfrac{1}{6}t^3$ (m). Tìm thời điểm $t$ (giây) mà tại đó vận tốc $v$(m/s) của chuyển động đạt giá trị lớn nhất.

$t=2$
$t=0.5$
$t=2.5$
$t=1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Một chất điểm chuyển động trong $20$ giây đầu tiên có phương trình $s\left(t\right)=\dfrac{1}{12}t^4-t^3+6t^2+10t$, trong đó $t>0$ với $t$ tính bằng giây $\left(s\right)$ và $s\left(t\right)$ tính bằng mét. Hỏi tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất thì vận tốc của vật bằng bao nhiêu?

$17$(m/s)
$18$(m/s)
$28$(m/s)
$13$(m/s)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Một chất điểm chuyển động theo quy luật $S=-\dfrac{1}{3}t^3+4t^2+\dfrac{2}{3}$ với $t$(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và $S$(mét) là quãng đường vật chuyển động trong thời gian đó. Hỏi trong khoảng thời gian $8$ giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của chất điểm là bao nhiêu?

$86$(m/s)
$16$(m/s)
$\dfrac{2}{3}$(m/s)
$43$(m/s)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một chất điểm chuyển động theo quy luật $S\left(t\right)=1+3t^2-t^3$. Vận tốc của chuyển động đạt giá trị lớn nhất khi $t$ bằng

$t=2$
$t=1$
$t=3$
$t=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Một vật chuyển động theo quy luật $s=-\dfrac{1}{2}t^3+6t^2$ với $t$ (giây) là khoảng thời gian từ khi vật bắt đầu chuyển động và $s$ (mét) là quãng đường vật di chuyển trong thời gian đó. Hỏi trong khoảng thời gian $6$ giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất vật đạt được bằng bao nhiêu?

$24$(m/s)
$108$(m/s)
$64$(m/s)
$18$(m/s)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho số phức $z=x+yi$ ($x\geq0$, $y\geq0$) thỏa $$\left|z-1+i\right|\leq\left|z+3-i\right|\leq\left|z-3-5i\right|.$$ Giá trị lớn nhất của $T=35x+63y$ bằng

$70$
$126$
$172$
$203$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $f(x)$, đồ thị của hàm số $y=f'(x)$ là đường cong trong hình bên.

Giá trị lớn nhất của hàm số $g(x)=f(2x)-4x$ trên đoạn $\left[-\dfrac{3}{2};2\right]$ bằng

$f(0)$
$f(-3)+6$
$f(2)-4$
$f(4)-8$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Gọi $M,\,m$ lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số $f(x)=x^4-2x^2+3$ trên đoạn $[0;2]$. Tổng $M+m$ bằng

$11$
$14$
$5$
$13$
1 lời giải Sàng Khôn
Lời giải Tương tự