Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.

Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng
| $2f(0)-1$ | |
| $2f(-1)-4$ | |
| $2f(1)$ | |
| $2f(2)-1$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.

Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng
| $f(2)+\dfrac{2}{3}$ | |
| $f(-1)+\dfrac{2}{3}$ | |
| $\dfrac{2}{3}$ | |
| $f(1)-\dfrac{2}{3}$ |
Cho hàm số $f(x)$ có đồ thị $f'(x)$ như hình vẽ.

Trên đoạn $[-4;3]$, hàm số $g(x)=2f(x)+(1-x)^2$ đạt giá trị nhỏ nhất tại điểm
| $x_0=-4$ | |
| $x_0=-1$ | |
| $x_0=3$ | |
| $x_0=-3$ |
Cho hàm số $y=f(x)$. Đồ thị của hàm số $y=f'(x)$ như hình vẽ.

Đặt $h(x)=f(x)-x$. Mệnh đề nào dưới đây đúng?
| $\min\limits_{[-2;2]}h(x)=h(-2)$ | |
| $\max\limits_{[0;4]}h(x)=h(0)$ | |
| $\min\limits_{[-1;2]}h(x)=h(-1)$ | |
| $h(2)< h(4)< h(0)$ |

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình. Gọi \(S\) là tập hợp các số nguyên dương \(m\) để bất phương trình $$f(x)\geq mx^2\left(x^2-2\right)+2m$$có nghiệm thuộc đoạn \([0;3]\). Số phần tử của tập \(S\) là
| \(9\) | |
| \(10\) | |
| Vô số | |
| \(0\) |
Một ngọn hải đăng đặt tại vị trí \(A\) cách bờ biển \(BC=5\) km. Trên bờ biển có một cái kho ở vị trí \(C\) cách \(B\) \(7\) km. Người gác hải đăng có thể chèo đò từ \(A\) đến vị trí \(M\) trên bờ biển với vận tốc \(4\) km/h rồi đi bộ đến \(C\) với vận tốc \(6\) km/h.

Vị trí của điểm \(M\) phải cách \(B\) bao nhiêu km để người gác hải đăng đến \(C\) nhanh nhất?
| \(0\) km | |
| \(\dfrac{14+5\sqrt{5}}{12}\) km | |
| \(2\sqrt{5}\) km | |
| \(7\) km |

Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ. Tìm \(\max\limits_{[-2;4]}\left|f(x)\right|\).
| \(\left|f(0)\right|\) | |
| \(2\) | |
| \(3\) | |
| \(1\) |
Cho hàm số $y=f(x)$ liên tục và có bảng biến thiên trên đoạn $[-1;3]$ như hình vẽ.

Khẳng định nào sau đây đúng?
| $\max\limits_{[-1;3]}f(x)=f(0)$ | |
| $\max\limits_{[-1;3]}f(x)=f(3)$ | |
| $\max\limits_{[-1;3]}f(x)=f(-1)$ | |
| $\max\limits_{[-1;3]}f(x)=f(2)$ |
Cho hai cây cột có chiều cao lần lượt là $6$m, $15$m và đặt cách nhau $20$m (như hình minh họa).

Một sợi dây dài được gắn vào đỉnh của mỗi cột và được đóng cọc xuống đất tại một điểm ở giữa hai cột. Chiều dài sợi dây được sử dụng ít nhất là
| $30$m | |
| $29$m | |
| $31$m | |
| $28$m |
Cho hàm số $y=f(x)$ có bảng biến thiên trên đoạn $[-1;3]$ như sau:

Giá trị lớn nhất của hàm số đã cho trên đoạn $[-1;3]$ bằng
| $1$ | |
| $4$ | |
| $0$ | |
| $5$ |
Giá trị nhỏ nhất của hàm số $y=x^3+3x^2-1$ trên đoạn $[-1;1]$ bằng
| $3$ | |
| $-1$ | |
| $1$ | |
| $2$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ sau:

Giá trị lớn nhất của hàm số $g(x)=f\big(4x-x^2\big)+\dfrac{x^3}{3}-3x^2+8x+\dfrac{1}{3}$ trên đoạn $[1;3]$ bằng
| $15$ | |
| $\dfrac{25}{3}$ | |
| $\dfrac{19}{3}$ | |
| $12$ |
Cho hàm số $y=f(x)$ xác thực trên tập số thực $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Đặt $g(x)=f(x)-x$, hàm số $g(x)$ nghịch biến trên khoảng
| $(1;+\infty)$ | |
| $(-1;2)$ | |
| $(2;+\infty)$ | |
| $(-\infty;-1)$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.

Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
| $3$ | |
| $4$ | |
| $1$ | |
| $2$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của $f'(x)$ như sau:

Hàm số $y=f(5-2x)$ đồng biến trên khoảng nào dưới đây?
| $(1;3)$ | |
| $(-\infty;-3)$ | |
| $(3;4)$ | |
| $(4;5)$ |
Đồ thị của hàm số $y=f(x)$ có dạng như đường cong trong hình vẽ bên.

Gọi $M$ là giá trị lớn nhất, $m$ là giá trị nhỏ nhất của hàm số $y=f(x)$ trên đoạn $[-1;1]$. Tính $P=M-2m$.
| $P=5$ | |
| $P=3$ | |
| $P=1$ | |
| $P=4$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Giá trị lớn nhất của hàm số $y=f(x)$ trên đoạn $[-1;1]$ bằng
| $1$ | |
| $3$ | |
| $-1$ | |
| $0$ |
Cho $x,\,y$ là các số thực thỏa mãn $(x-3)^2+(y-1)^2=5$. Giá trị nhỏ nhất của biểu thức $P=\dfrac{3y^2+4xy+7x+4y-1}{x+2y+1}$ là
| $2\sqrt{3}$ | |
| $\dfrac{114}{11}$ | |
| $\sqrt{3}$ | |
| $3$ |
Cho $x,\,y$ là hai số thực bất kì thuộc đoạn $[1;3]$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $S=\dfrac{x}{y}+\dfrac{y}{x}$. Tính $M+m$.
| $M+m=\dfrac{10}{3}$ | |
| $M+m=\dfrac{16}{3}$ | |
| $M+m=3$ | |
| $M+m=5$ |
Cho hai số thực $x,\,y$ thay đổi thỏa mãn điều kiện $x^2+y^2=2$. Gọi $M$, $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=2\big(x^3+y^3\big)-3xy$. Giá trị của $M+m$ bằng
| $-4$ | |
| $-\dfrac{1}{2}$ | |
| $-6$ | |
| $1-4\sqrt{2}$ |