Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?

| $y=x^4-2x^2-1$ | |
| $y=\dfrac{x+1}{x-1}$ | |
| $y=x^3-3x-1$ | |
| $y=x^2+x-1$ |
Tiệm cận đứng của đồ thị hàm số $y=\dfrac{3x+2}{x-2}$ là đường thẳng có phương trình
| $x=2$ | |
| $x=-1$ | |
| $x=3$ | |
| $x=-2$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của đạo hàm như sau:

Số điểm cực trị của hàm số đã cho là
| $3$ | |
| $2$ | |
| $4$ | |
| $5$ |
Điểm nào dưới đây thuộc đồ thị của hàm số $y=x^4+x^2-2$?
| Điểm $P(-1;-1)$ | |
| Điểm $N(-1;-2)$ | |
| Điểm $M(-1;0)$ | |
| Điểm $Q(-1;1)$ |
Cho $f(x)$ là hàm số bậc bốn thỏa mãn $f(0)=0$. Hàm số $f'(x)$ có bảng biến thiên như sau:
Hàm số $g(x)=\left|f\left(x^3\right)-3x\right|$ có bao nhiêu điểm cực trị?
| $3$ | |
| $5$ | |
| $4$ | |
| $2$ |
Cho hàm số $f(x)$, đồ thị của hàm số $y=f'(x)$ là đường cong trong hình bên.
Giá trị lớn nhất của hàm số $g(x)=f(2x)-4x$ trên đoạn $\left[-\dfrac{3}{2};2\right]$ bằng
| $f(0)$ | |
| $f(-3)+6$ | |
| $f(2)-4$ | |
| $f(4)-8$ |
Gọi $M,\,m$ lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số $f(x)=x^4-2x^2+3$ trên đoạn $[0;2]$. Tổng $M+m$ bằng
| $11$ | |
| $14$ | |
| $5$ | |
| $13$ |
Hàm số nào dưới đây đồng biến trên $\mathbb{R}$?
| $y=\dfrac{x+1}{x-2}$ | |
| $y=x^2+2x$ | |
| $y=x^3-x^2+x$ | |
| $y=x^4-3x^2+2$ |
Đồ thị của hàm số $y=x^3-3x+2$ cắt trục tung tại điểm có tung độ bằng
| $0$ | |
| $1$ | |
| $2$ | |
| $-2$ |
Tiệm cận đứng của đồ thị hàm số $y=\dfrac{2x+4}{x-1}$ là đường thẳng
| $x=1$ | |
| $x=-1$ | |
| $x=2$ | |
| $x=-2$ |
Cho hàm số $f(x)$ có bảng xét dấu của đạo hàm $f'(x)$ như sau:
Hàm số $f(x)$ có bao nhiêu điểm cực trị?
| $4$ | |
| $1$ | |
| $2$ | |
| $3$ |
Cho hàm số $f(x)$ có bảng biến thiên như sau:
Điểm cực đại của hàm số đã cho là
| $x=-3$ | |
| $x=1$ | |
| $x=2$ | |
| $x=-2$ |
Cho hàm số $f(x)$ có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào trong các khoảng dưới đây?
| $(-2;2)$ | |
| $(0;2)$ | |
| $(-2;0)$ | |
| $(2;+\infty)$ |
Tìm tất cả các giá trị của tham số \(m\) để đồ thị hàm số \(y=x^3+5x^2-mx+3\) đi qua điểm \(A(-1;9)\)?
| \(m=\dfrac{2}{3}\) | |
| \(m=-\dfrac{2}{3}\) | |
| \(m=2\) | |
| \(m=-\dfrac{3}{2}\) |
Tìm \(m\) để đường thẳng \(y=x-m\) cắt đồ thị hàm số \(y=\dfrac{2x+1}{x+1}\) tại \(2\) điểm phân biệt.
| \(m<-1\) | |
| \(m>-5\) | |
| \(m<-5\) hoặc \(m>-1\) | |
| \(-5< m<-1\) |
Tìm \(m\) để đường thẳng \(y=2x+m\) cắt đồ thị hàm số \(y=\dfrac{2x}{x+1}\) tại \(2\) điểm phân biệt.
| \(m\in(-\infty;0)\cup(8;+\infty)\) | |
| \(m\in(-\infty;0]\cup[8;+\infty)\) | |
| \(m\in(0;8)\) | |
| \(m\in[0;8]\) |
Tìm các giá trị của tham số \(m\) để đường cong \(\left(\mathscr{C}\right)\colon y=x^3-3x+m\) cắt trục hoành tại \(3\) điểm phân biệt.
| \(m\in(2;+\infty)\) | |
| \(m\in(-2;2)\) | |
| \(m\in\mathbb{R}\) | |
| \(m\in(-\infty;-2)\) |
Tìm các giá trị của tham số \(m\) để phương trình \(x^3-12x+m-2=0\) có \(3\) nghiệm phân biệt.
| \(m\in[-14;18]\) | |
| \(m\in(-14;18)\) | |
| \(m\in(-18;14)\) | |
| \(\left[\begin{array}{l}m<-14\\ m>18\end{array}\right.\) |
Cho đồ thị \(\left(\mathscr{C}\right)\colon y=x^4-2x^2\). Đường thẳng nào sau đây cắt \(\left(\mathscr{C}\right)\) tại \(2\) điểm phân biệt?
| \(y=0\) | |
| \(y=1\) | |
| \(y=-\dfrac{3}{2}\) | |
| \(y=-\dfrac{1}{2}\) |
Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f(x)-2-m=0\) có \(3\) nghiệm phân biệt?
| \(5\) | |
| \(4\) | |
| \(3\) | |
| \(2\) |