Biết rằng khai triển của nhị thức $(3x+5)^n$ có $7$ số hạng, tìm giá trị của $n$.
| $n=3$ | |
| $n=5$ | |
| $n=7$ | |
| $n=6$ |
Số hạng tổng quát của khai triển $(a+b)^n$ là
| $\mathrm{C}_n^ka^{n-k}b^k$ | |
| $\mathrm{C}_n^ka^{n-k}b^{n-k}$ | |
| $\mathrm{C}_n^ka^kb^k$ | |
| $\mathrm{C}_n^k(ab)^k$ |
Trong khai triển \(\left(a-\dfrac{5}{x^3}\right)^{2019}\) có bao nhiêu số hạng?
| \(2020\) số hạng | |
| \(2019\) số hạng | |
| \(2018\) số hạng | |
| \(2021\) số hạng |
Trong khai triển của nhị thức \((a+2)^{n+6}\) có tất cả \(17\) số hạng. Khi đó \(n\) bằng
| \(10\) | |
| \(12\) | |
| \(17\) | |
| \(11\) |
Với $m,\,n$ là hai số thực bất kỳ, $a$ là số thực dương tùy ý. Khẳng định nào sau đây sai?
| $a^{m\cdot n}=\big(a^n\big)^m$ | |
| $a^{m-n}=\dfrac{a^m}{a^n}$ | |
| $a^{m+n}=a^m+a^n$ | |
| $a^{m\cdot n}=\big(a^m\big)^n$ |
Một khối trụ có khoảng cách giữa hai đáy, độ dài đường sinh và bán kính đường tròn đáy lần lượt là $h$, $\ell$, $r$. Khi đó công thức tính diện tích toàn phần của khối trụ là
| $S_{\text{tp}}=\pi r(\ell+r)$ | |
| $S_{\text{tp}}=2\pi r(\ell+r)$ | |
| $S_{\text{tp}}=2\pi r(\ell+2r)$ | |
| $S_{\text{tp}}=\pi r(2\ell+r)$ |
Cho hai số thực $a,\,b>1$. Khẳng định nào dưới đây đúng?
| $\log(a+b)=\log a+\log b$ | |
| $\log(ab)=\log a+\log b$ | |
| $\log(a-b)=\log a-\log b$ | |
| $\log\left(\dfrac{a}{b}\right)=\log a+\log b$ |
Với $a,\,b,\,c$ là các số thực dương và $a\neq1$ thì $\log_a(b.c)$ bằng
| $\log_ac-\log_ab$ | |
| $\log_ab-\log_ac$ | |
| $\log_ab\cdot\log_ac$ | |
| $\log_ab+\log_ac$ |
Thể tích khối lăng trụ có chiều cao là $h$ và diện tích đáy là $B$ bằng
| $Bh$ | |
| $\dfrac{1}{3}Bh$ | |
| $3Bh$ | |
| $\dfrac{4}{3}Bh$ |
Trong không gian $Oxyz$, mặt phẳng $(Oxz)$ có phương trình là
| $x=0$ | |
| $z=0$ | |
| $x+y+z=0$ | |
| $y=0$ |
Cho $f(x)$ là hàm số liên tục trên $[a;b]$ và $F(x)$ là một nguyên hàm của $f(x)$. Khẳng định nào sau đây đúng?
| $\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=F(x)\bigg|_a^b=F(b)-F(a)$ | |
| $\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=f(x)\bigg|_a^b=f(b)-f(a)$ | |
| $\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=F(x)\bigg|_a^b=-F(b)-F(a)$ | |
| $\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=F(x)\bigg|_a^b=F(a)-F(b)$ |
Cho hai hàm số $u=u(x)$, $v=v(x)$ có đạo hàm liên tục. Khi đó, $\displaystyle\displaystyle\int u\mathrm{d}v$ bằng
| $uv-\displaystyle\displaystyle\int v\mathrm{d}u$ | |
| $uv+\displaystyle\displaystyle\int v\mathrm{d}u$ | |
| $-uv-\displaystyle\displaystyle\int v\mathrm{d}u$ | |
| $-uv+\displaystyle\displaystyle\int v\mathrm{d}u$ |
Trong không gian $Oxyz$, cho vectơ $\overrightarrow{a}=-3\overrightarrow{j}+4\overrightarrow{k}$. Tọa độ của vectơ $\overrightarrow{a}$ là
| $(0;-4;3)$ | |
| $(-3;0;4)$ | |
| $(0;3;4)$ | |
| $(0;-3;4)$ |
Cho hàm số $f(x)$ và $g(x)$ cùng liên tục trên $\mathbb{R}$. Khẳng định nào đúng?
| $\displaystyle\displaystyle\int\big[f(x)\cdot g(x)\big]\mathrm{\,d}x=\left(\displaystyle\int f(x)\mathrm{\,d}x\right)\cdot\left(\displaystyle\int g(x)\mathrm{\,d}x\right)$ | |
| $\displaystyle\displaystyle\int\big(f(x)-g(x)\big)\mathrm{\,d}x=\displaystyle\int g(x)\mathrm{\,d}x-\displaystyle\int f(x)\mathrm{\,d}x$ | |
| $\displaystyle\displaystyle\int\big[f(x)+g(x)\big]\mathrm{\,d}x=\displaystyle\int f(x)\mathrm{\,d}x+\displaystyle\int g(x)\mathrm{\,d}x$ | |
| $\displaystyle\displaystyle\int\left[\dfrac{f(x)}{g(x)}\right]\mathrm{\,d}x=\dfrac{\displaystyle\int f(x)\mathrm{\,d}x}{\displaystyle\int g(x)\mathrm{\,d}x}$ |
Cho hàm số $y=f(x)$, $y=g(x)$ liên tục trên $[a;b]$. Gọi $H$ là hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$, $y=g(x)$, trục hoành và hai đường thẳng $x=a$, $x=b$ ($a< b$). Diện tích của hình $H$ được tính theo công thức nào sau đây?
| $S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{\,d}x$ | |
| $S=\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)-g(x)\big|\mathrm{\,d}x$ | |
| $S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)-g(x)\big|\mathrm{\,d}x$ | |
| $S=\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{\,d}x$ |
Cho hình lăng trụ có cạnh bên vuông góc với mặt đáy, khi đó các mặt bên của lăng trụ là hình gì?
| Hình chữ nhật | |
| Hình bình hành | |
| Hình thoi | |
| Hình vuông |
Biết rằng $b,\,c$ là hai đường thẳng cắt nhau và cùng nằm trong mặt phẳng $(\alpha)$. Nếu đường thẳng $a$ vuông góc với cả $b$ và $c$ thì
| $a\perp(\alpha)$ | |
| $a\parallel(\alpha)$ | |
| $a\subset(\alpha)$ | |
| $a,\,b,\,c$ đồng quy |
Biết rằng đường thẳng $a$ vuông góc với mặt phẳng $(\alpha)$ và đường thẳng $b$ nằm trên mặt phẳng $(\alpha)$. Kết luận nào sau đây là đúng?
| $a\perp b$ | |
| $a\parallel b$ | |
| $a,\,b$ chéo nhau | |
| $a,\,b$ cắt nhau |
Cho hình nón có đường kính đáy $2r$ và độ dải đường sinh $\ell$. Diện tích xung quanh của hình nón đã cho bằng
| $2\pi r\ell$ | |
| $\dfrac{2}{3}\pi r\ell^2$ | |
| $\pi r\ell$ | |
| $\dfrac{1}{3}\pi r^2\ell$ |
Trong không gian $Oxyz$, góc giữa hai mặt phẳng $(Oxy)$ và $(Oyz)$ bằng
| $30^{\circ}$ | |
| $45^{\circ}$ | |
| $60^{\circ}$ | |
| $90^{\circ}$ |