Ngân hàng bài tập

Bài tập tương tự

Cho hàm số $f(x)=\ln\big(x^2+1\big)$. Giá trị $f'(2)$ bằng

$\dfrac{4}{5}$
$\dfrac{4}{3\ln2}$
$\dfrac{4}{2\ln5}$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tính đạo hàm của hàm số $y=2x^3+x\ln x$ tại điểm $x=1$.

$6$
$2$
$3$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho $x,\,y$ là các số thực thỏa mãn $(x-3)^2+(y-1)^2=5$. Giá trị nhỏ nhất của biểu thức $P=\dfrac{3y^2+4xy+7x+4y-1}{x+2y+1}$ là

$2\sqrt{3}$
$\dfrac{114}{11}$
$\sqrt{3}$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho $x,\,y$ là hai số thực bất kì thuộc đoạn $[1;3]$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $S=\dfrac{x}{y}+\dfrac{y}{x}$. Tính $M+m$.

$M+m=\dfrac{10}{3}$
$M+m=\dfrac{16}{3}$
$M+m=3$
$M+m=5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hai số thực $x,\,y$ thay đổi thỏa mãn điều kiện $x^2+y^2=2$. Gọi $M$, $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=2\big(x^3+y^3\big)-3xy$. Giá trị của $M+m$ bằng

$-4$
$-\dfrac{1}{2}$
$-6$
$1-4\sqrt{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Điện lượng truyền trong dây dẫn có phương trình $Q=t^2$. Tính cường độ dòng điện tức thời tại thời điểm $t_0=5$ (giây).

$3$(A)
$25$(A)
$10$(A)
$2$(A)
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Một chất điểm chuyển động có phương trình $s=t^3-2t$ ($t$ tính bằng giây, $s$ tính bằng mét). Tính vận tốc của chất điểm tại thời điểm $t_0=4$ (giây)?

$64$m/s
$46$m/s
$56$m/s
$22$m/s
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho $f(x)=\dfrac{x^2-x+2}{x+1}$. Tính $f'(-2)$.

$-3$
$-5$
$1$
$0$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hai hàm số $f(x)=x^2+2$, $g(x)=\dfrac{1}{1-x}$. Tính $\dfrac{f’(1)}{g’(0)}$.

$0$
$-2$
$2$
$1$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Một chất điểm chuyển động có phương trình $s=t^3+3t$ ($t$ tính bằng giây, $s$ tính bằng mét). Tính vận tốc của chất điểm tại thời điểm $t_0=2$ (giây).

$12$m/s
$15$m/s
$14$m/s
$7$m/s
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Đạo hàm của hàm số $y=\dfrac{x+1}{x-1}$ tại điểm $x_0=2$ bằng

$-2$
$1$
$0$
$2$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $y=f\left(x\right)$ xác định trên $\left(a;b\right)$, $x_0\in\left(a;b\right)$. Đạo hàm của hàm số $y=f\left(x\right)$ tại điểm $x_0$ là

$f'\left(x_0\right)=\lim\limits_{\Delta y\to0}\dfrac{\Delta y}{\Delta x}$
$f'\left(x_0\right)=\lim\limits_{\Delta x\to0}\dfrac{\Delta y}{\Delta x}$
$f'\left(x_0\right)=\lim\limits_{x\to0}\dfrac{\Delta y}{\Delta x}$
$f'\left(x_0\right)=\lim\limits_{x\to0}\dfrac{\Delta x}{\Delta y}$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Một chất điểm chuyển động theo quy luật $s\left(t\right)=t^2-\dfrac{1}{6}t^3$ (m). Tìm thời điểm $t$ (giây) mà tại đó vận tốc $v$(m/s) của chuyển động đạt giá trị lớn nhất.

$t=2$
$t=0.5$
$t=2.5$
$t=1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho chuyển động thẳng xác định bởi phương trình $S=-t^3+3t^2+9t$, trong đó $t$ tính bằng giây và $S$ tính bằng mét. Tính vận tốc của chuyển động tại thời điểm gia tốc triệt tiêu.

$12\,\text{m/s}$
$0\,\text{m/s}$
$11\,\text{m/s}$
$6\,\text{m/s}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Một chất điểm chuyển động trong $20$ giây đầu tiên có phương trình $s\left(t\right)=\dfrac{1}{12}t^4-t^3+6t^2+10t$, trong đó $t>0$ với $t$ tính bằng giây $\left(s\right)$ và $s\left(t\right)$ tính bằng mét. Hỏi tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất thì vận tốc của vật bằng bao nhiêu?

$17$(m/s)
$18$(m/s)
$28$(m/s)
$13$(m/s)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một chuyển động thẳng xác định bởi phương trình $s=t^3-3t^2+5t+2$, trong đó $t$ tính bằng giây và $s$ tính bằng mét. Gia tốc của chuyển động khi $t=3$ là

$24\text{m/s}^2$
$17\text{m/s}^2$
$14\text{m/s}^2$
$12\text{m/s}^2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Một vật chuyển động theo quy luật $s\left(t\right)=-\dfrac{1}{2}t^3+12t^2$, $t$ (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động, $s$ (mét) là quãng đường vật chuyển động trong $t$ giây. Tính vận tốc tức thời của vật tại thời điểm $t=10$ (giây).

$80$(m/s)
$70$(m/s)
$90$(m/s)
$100$(m/s)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Một chất điểm chuyển động theo quy luật $S=-\dfrac{1}{3}t^3+4t^2+\dfrac{2}{3}$ với $t$(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và $S$(mét) là quãng đường vật chuyển động trong thời gian đó. Hỏi trong khoảng thời gian $8$ giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của chất điểm là bao nhiêu?

$86$(m/s)
$16$(m/s)
$\dfrac{2}{3}$(m/s)
$43$(m/s)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một chuyển động xác định bởi phương trình $S\left(t\right)=t^3-3t^2-9t+2$. Trong đó $t$ được tính bằng giây, $S$ được tính bằng mét. Khẳng định nào sau đây đúng?

Vận tốc của chuyển động bằng $0$ khi $t=0$s hoặc $t=2$s
Gia tốc của chuyển động tại thời điểm $t=3$s là $12\text{m/s}^2$
Gia tốc của chuyển động bằng $0\text{m/s}^2$ khi $t=0$s
Vận tốc của chuyển động tại thời điểm $t=2$s là $v=18$m/s
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một chất điểm chuyển động theo quy luật $S\left(t\right)=1+3t^2-t^3$. Vận tốc của chuyển động đạt giá trị lớn nhất khi $t$ bằng

$t=2$
$t=1$
$t=3$
$t=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự