Ngân hàng bài tập

Bài tập tương tự

S

Đồ thị hàm số \(y=x^3-2mx^2+m^2x+n\) có tọa độ điểm cực tiểu là \((1;3)\). Khi đó \(m+n\) bằng

\(4\)
\(3\)
\(2\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Điểm cực tiểu của đồ thị hàm số \(y=-x^3+x^2+5x-5\) là

\(E(-1;-8)\)
\(G(0;-5)\)
\(F\left(\dfrac{5}{3};\dfrac{40}{27}\right)\)
\(H(1;0)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đồ thị hàm số \(y=-x^3+3x\) có điểm cực tiểu là

\(M(-1;0)\)
\(N(1;0)\)
\(Q(1;-2)\)
\(P(-1;-2)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Giá trị cực đại của hàm số đã cho là

$-1$
$3$
$2$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.

Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?

$3$
$4$
$1$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.

Số điểm cực trị của hàm số $g(x)=3f\big(f(x)\big)+4$ là

$5$
$3$
$8$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số bậc bốn $y=f(x)$ có đồ thị như hình vẽ.

Tìm số điểm cực trị của hàm số $g(x)=f\left(x^2\right)$.

$5$
$3$
$7$
$11$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Hàm số $g(x)=f(x)-\dfrac{x^3}{3}+x^2-x+2$ có bao nhiêu điểm cực trị?

$1$
$2$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Hàm số $g(x)=2f(x)+x^2$ có bao nhiêu điểm cực trị?

$1$
$2$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Hàm số $g(x)=f(x)+3x$ có bao nhiêu điểm cực trị?

$1$
$2$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Tìm số điểm cực trị của hàm số $g(x)=f(x)-x$.

$1$
$2$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Số điểm cực trị của hàm số $y=f(x)+2x$ là

$1$
$2$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=4x^3+mx^2-3x$. Tìm các giá trị của tham số $m$ sao cho $x_1+4x_2=0$.

$m=0$
$m=\pm\dfrac{9}{2}$
$m=\pm\dfrac{3}{2}$
$m=\pm\dfrac{1}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=x^3-3mx^2+3\big(m^2-1\big)x-m^3+m$. Tìm các giá trị của tham số $m$ sao cho $x_1^2+x_2^2-x_1x_2=7$.

$m=0$
$m=\pm\dfrac{9}{2}$
$m=\pm\dfrac{1}{2}$
$m=\pm2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Gọi $S$ là tập hợp các giá trị nguyên để hàm số $y=\dfrac{x^3}{3}-(m+1)x^2+(m-2)x+2m-3$ đạt cực trị tại hai điểm $x_1,\,x_2$ thỏa mãn $x_1^2+x_2^2=18$. Tính tổng $P$ của tất cả các giá trị $m$ trong $S$.

$P=-4$
$P=1$
$P=-\dfrac{3}{2}$
$P=-5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Đồ thị hàm số $y=x^3-3x^2-9x+1$ có hai điểm cực trị là $A$ và $B$. Điểm nào sau đây thuộc đường thẳng $AB$?

$M(0;-1)$
$Q(-1;10)$
$P(1;0)$
$N(1;-10)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y=-2x^3+3x^2+1$.

$y=x+1$
$y=-x+1$
$y=x-1$
$y=-x-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết đồ thị hàm số $y=x^3-3x+1$ có hai điểm cực trị $A,\,B$. Khi đó đường thẳng $AB$ có phương trình

$y=2x-1$
$y=x-2$
$y=-x+2$
$y=-2x+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)=x^3+ax^2+bx+c$ với $a,\,b,\,c$ là các số thực. Biết hàm số $g(x)=f(x)+f'(x)+f''(x)$ có hai giá trị cực trị là $-3$ và $6$. Diện tích hình phẳng giới hạn bởi các đường $y=\dfrac{f(x)}{g(x)+6}$ và $y=1$ bằng

$2\ln3$
$\ln3$
$\ln18$
$2\ln2$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f(x)$, biết $f'(x)$ có đồ thị như hình bên.

Số điểm cực trị của hàm số $f(x)$ là

$2$
$1$
$3$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự