Ngân hàng bài tập

Toán học

C

$\lim\left(\dfrac{1}{3}\right)^n$ bằng

$0$
$\dfrac{1}{3}$
$1$
$+\infty$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

$\lim\dfrac{1}{2n+1}$ bằng

$0$
$\dfrac{1}{2}$
$1$
$+\infty$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hai dãy $\left(u_n\right)$ và $\left(v_n\right)$ thỏa mãn $\lim u_n=2$ và $\lim v_n=3$. Giá trị của $\lim\left(u_n+v_n\right)$ bằng

$5$
$6$
$-1$
$1$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Một khung cửa kính hình parabol với đỉnh $M$ và cạnh đáy $AB$ như minh họa ở hình bên. Biết chi phí để lắp phần kính màu (phần tô đậm trong hình) là $200.000$ đồng/m$^2$ và phần kính trắng còn lại là $150.000$ đồng/m$^2$.

Cho $MN=AB=4$m và $MC=CD=DN$. Hỏi số tiền để lắp kính cho khung cửa như trên gần nhất với số tiền nào dưới đây?

$1.954.000$ đồng
$2.123.000$ đồng
$1.946.000$ đồng
$2.145.000$ đồng
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong mặt phẳng $Oxy$ cho hai điểm $A,\,B$ là điểm biểu diễn cho các số phức $z$ và $w=(1+i)z$. Biết tam giác $OAB$ có diện tích bằng $8$. Mô-đun của số phức $w-z$ bằng

$2$
$2\sqrt{2}$
$4\sqrt{2}$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
SSS

Trong không gian $Oxyz$ cho ba điểm $M(2;1;4)$, $N(5;0;0)$ và $P(1;-3;1)$. Hỏi có bao nhiêu mặt cầu qua ba điểm $M,\,N,\,P$ và tiếp xúc với mặt phẳng $Oyz$?

$0$
$1$
$2$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Trong không gian $Oxyz$ cho hai điểm $A(1;2;-3)$, $M(-2;-2;1)$ và đường thẳng $d$ có phương trình $\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Phương trình đường thẳng $d'$ đi qua $M$ và vuông góc với $d$ sao cho khoảng cách từ điểm $A$ đến $d'$ nhỏ nhất là

$\begin{cases}x=-2+t\\ y=-2\\ z=1+t\end{cases}$
$\begin{cases}x=-2\\ y=-2+t\\ z=1+2t\end{cases}$
$\begin{cases}x=-2+t\\ y=-2-t\\ z=1\end{cases}$
$\begin{cases}x=-2+t\\ y=-2\\ z=1+2t\end{cases}$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho hai hàm số $f(x)=mx^3+nx^2+px-\dfrac{5}{2}$ $(m,\,n,\,p\in\mathbb{R})$ và $g(x)=x^2+2x-1$ có đồ thị cắt nhau tại ba điểm có hoành độ lần lượt là $-3$, $-1$, $1$ (tham khảo hình vẽ bên).

Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số $f(x)$ và $g(x)$ bằng

$\dfrac{9}{2}$
$\dfrac{18}{5}$
$4$
$5$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Một thùng rượu vang có dạng hình tròn xoay có hai đáy là hai hình tròn bằng nhau, khoảng cách giữa hai đáy bằng $80$ (cm). Đường sinh của mặt xung quanh thùng là một phần đường tròn có bán kính bằng $60$ (cm) (tham khảo hình minh họa bên).

Hỏi thùng đó có thể đựng bao nhiêu lít rượu? (làm tròn đến hàng đơn vị)

$771$
$385$
$603$
$905$
1 lời giải Sàng Khôn
Lời giải Tương tự
SSS

Cho số phức $z=x+yi$ ($x\geq0$, $y\geq0$) thỏa $$\left|z-1+i\right|\leq\left|z+3-i\right|\leq\left|z-3-5i\right|.$$ Giá trị lớn nhất của $T=35x+63y$ bằng

$70$
$126$
$172$
$203$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $f(x)$ thỏa $f(1)=\dfrac{1}{3}$ và $f'(x)=\big[xf(x)\big]^2$ với mọi $x\in\mathbb{R}$. Giá trị $f(2)$ bằng

$\dfrac{2}{3}$
$\dfrac{3}{2}$
$\dfrac{16}{3}$
$\dfrac{3}{16}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, mặt phẳng $x+\sqrt{2}y-z+3=0$ cắt mặt cầu $x^2+y^2+z^2=5$ theo giao tuyến là một đường tròn. Chu vi đường tròn đó bằng

$\pi\sqrt{11}$
$3\pi$
$\pi\sqrt{15}$
$\pi\sqrt{7}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Có bao nhiêu số phức $z=a+bi$ với $a,\,b$ là các số tự nhiên thuộc đoạn $[2;9]$ và tổng $a+b$ chia hết cho $3$?

$42$
$27$
$21$
$18$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho hàm số $f(x)$ liên tục trên đoạn $[1;2]$. Biết $f(2)=a$ và $\displaystyle\displaystyle\int\limits_{1}^{2}(x-1)f'(x)\mathrm{\,d}x=b$. Tích phân $\displaystyle\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x$ có giá trị bằng

$a-b$
$b-a$
$a+b$
$-a-b$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z}{2}$ cắt mặt phẳng $(P)\colon x-y+2z+3=0$ tại điểm $M(a;b;c)$. Giá trị $P=a+b+c$ bằng

$5$
$-2$
$-5$
$0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Một ô tô đang chạy với vận tốc $15$ (m/s) thì tăng tốc chuyển động nhanh dần với gia tốc $a=3t-8$ (m/s$^2$), trong đó $t$ là khoảng thời gian tính bằng giây kể từ lúc tăng vận tốc. Hỏi sau $10$ giây tăng tốc, ô tô đi được bao nhiêu mét?

$150$
$180$
$246$
$250$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, phương trình mặt phẳng chứa trục $Oy$ và qua điểm $A(1;4;-3)$ là

$3x+z=0$
$3x+y=0$
$x+3z=0$
$3x-z=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho số phức $z=m+1+mi$ với $m\in\mathbb{R}$. Hỏi có bao nhiêu giá trị nguyên của $m\in(-5;5)$ sao cho $|z-2i|>1$?

$0$
$4$
$5$
$9$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Nếu $\displaystyle\displaystyle\int\limits_1^3f(x)\mathrm{\,d}x=3$ thì $\displaystyle\displaystyle\int\limits_1^5f\left(\dfrac{x+1}{2}\right)\mathrm{\,d}x$ bằng

$\dfrac{3}{2}$
$3$
$\dfrac{5}{2}$
$6$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$ cho lăng trụ $ABC.A'B'C'$ có phương trình các mặt phẳng $(ABC)$ và $\left(A'B'C'\right)$ lần lượt là $x-2y+z+2=0$ và $x-2y+z+4=0$. Biết tam giác $ABC$ có diện tích bằng $6$. Thể tích của khối lăng trụ đó bằng

$6\sqrt{6}$
$2\sqrt{6}$
$\dfrac{\sqrt{6}}{3}$
$\dfrac{4\sqrt{6}}{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự