Phát biểu nào sau đây đúng?
| Hàm số $y=f(x)$ đạt cực trị tại $x_0$ khi và chỉ khi $x_0$ là nghiệm của đạo hàm | |
| Nếu $f'\big(x_0\big)=0$ và $f''\big(x_0\big)>0$ thì hàm số đạt cực đại tại $x_0$ | |
| Nếu $f'\big(x_0\big)=0$ và $f''\big(x_0\big)=0$ thì $x_0$ không phải là cực trị của hàm số $y=f(x)$ đã cho | |
| Nếu $f'(x)$ đổi dấu khi $x$ qua điểm $x_0$ và $y=f(x)$ liên tục tại $x_0$ thì hàm số $y=f(x)$ đạt cực trị tại điểm $x_0$ |
Cho hàm số $f(x)=x^3+ax^2+bx+c$ với $a,\,b,\,c$ là các số thực. Biết hàm số $g(x)=f(x)+f'(x)+f''(x)$ có hai giá trị cực trị là $-3$ và $6$. Diện tích hình phẳng giới hạn bởi các đường $y=\dfrac{f(x)}{g(x)+6}$ và $y=1$ bằng
| $2\ln3$ | |
| $\ln3$ | |
| $\ln18$ | |
| $2\ln2$ |
Tính đạo hàm cấp hai của hàm số $y=(4x+3)^8$.
| $y''=224(4x+3)^6$ | |
| $y''=32(4x+3)^7$ | |
| $y''=56(4x+3)^6$ | |
| $y''=896(4x+3)^6$ |
Cho hàm số $f\left(x\right)=\left(x+1\right)^3$. Giá trị của $f''\left(1\right)$ bằng
| $12$ | |
| $6$ | |
| $24$ | |
| $4$ |
Cho hàm số $y=\dfrac{2x+4}{x^2+4x+3}$. Phương trình $y''=0$ có nghiệm là
| $x=-4$ | |
| $x=-2$ | |
| $x=0$ | |
| $x=2$ |
Cho hàm số $y=\dfrac{1}{x}$. Khẳng định nào dưới đây là đúng?
| $y''y^3+2=0$ | |
| $y''y=2\left(y'\right)^2$ | |
| $y''y+2\left(y'\right)^2=0$ | |
| $y''y^3=2$ |
Cho hàm số $y=\sin2x$. Khẳng định nào sau đây là đúng?
| $y^2-\left(y'\right)^2=4$ | |
| $4y+y''=0$ | |
| $4y-y''=0$ | |
| $y=y'.\tan2x$ |
Cho hàm số $y=\sin^2x$. Khẳng định nào sau đây đúng?
| $2y'+y''=\sqrt{2}\cos\left(2x-\dfrac{\pi}{4}\right)$ | |
| $2y+y'.\tan x=0$ | |
| $4y-y''=2$ | |
| $4y'+y'''=0$ |
Cho hàm số $y=\sin^2x$. Tính $y^{\left(2018\right)}\left(\pi\right)$.
| $y^{\left(2018\right)}\left(\pi\right)=2^{2017}$ | |
| $y^{\left(2018\right)}\left(\pi\right)=2^{2018}$ | |
| $y^{\left(2018\right)}\left(\pi\right)=-2^{2017}$ | |
| $y^{\left(2018\right)}\left(\pi\right)=-2^{2018}$ |
Cho hàm số $f\left(x\right)=\sqrt{2x-1}$. Tính $f'''\left(1\right)$.
| $3$ | |
| $-3$ | |
| $\dfrac{3}{2}$ | |
| $0$ |
Cho hàm số $f\left(x\right)=\cos2x$. Tính $P=f''\left(\pi\right)$.
| $P=4$ | |
| $P=0$ | |
| $P=-4$ | |
| $P=-1$ |
Cho hàm số $f\left(x\right)=\dfrac{1}{2x-1}$. Tính $f''\left(-1\right)$.
| $-\dfrac{8}{27}$ | |
| $\dfrac{2}{9}$ | |
| $\dfrac{8}{27}$ | |
| $-\dfrac{4}{27}$ |
Cho hàm số $y=\cos^2x$. Khi đó $y^{\left(3\right)}\left(\dfrac{\pi}{3}\right)$ bằng
| $-2$ | |
| $2$ | |
| $2\sqrt{3}$ | |
| $-2\sqrt{3}$ |
Cho hàm số $f\left(x\right)=x^3+2x$, giá trị của $f''\left(1\right)$ bằng
| $6$ | |
| $8$ | |
| $3$ | |
| $2$ |
Đạo hàm cấp hai của hàm số $y=f\left(x\right)=x\sin x-3$ là biểu thức nào trong các biểu thức sau?
| $f''\left(x\right)=2\cos x-x\sin x$ | |
| $f''\left(x\right)=-x\sin x$ | |
| $f''\left(x\right)=\sin x-x\cos x$ | |
| $f''\left(x\right)=1+\cos x$ |
Hàm số \(y=x^3+mx^2\) đạt cực đại tại \(x=-2\) khi và chỉ khi giá trị của tham số thực \(m\) bằng
| \(-3\) | |
| \(3\) | |
| \(-12\) | |
| \(12\) |
Cho hàm số \(y=\mathrm{e}^{-2x}\). Mệnh đề nào sau đây đúng?
| \(y''+y'-y=0\) | |
| \(y''+y'+y=0\) | |
| \(y''+y'+2y=0\) | |
| \(y''+y'-2y=0\) |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu $f'(x)$ như sau:

Hỏi hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu?
| $1$ | |
| $3$ | |
| $2$ | |
| $4$ |
Cho hàm số $f(x)=\ln\big(x^2+1\big)$. Giá trị $f'(2)$ bằng
| $\dfrac{4}{5}$ | |
| $\dfrac{4}{3\ln2}$ | |
| $\dfrac{4}{2\ln5}$ | |
| $2$ |
Đạo hàm của hàm số $y=x^{2023}$ là
| $y'=2023x^{2023}$ | |
| $y'=2022x^{2023}$ | |
| $y'=2023x^{2022}$ | |
| $y'=\dfrac{1}{2023}x^{2022}$ |