Có bao nhiêu giá trị nguyên dương của \(x\) thỏa mãn $$\dfrac{x+3}{x^2-4}-\dfrac{1}{x+2}<\dfrac{2x}{2x-x^2}?$$
| \(0\) | |
| \(2\) | |
| \(1\) | |
| \(3\) |
Tập nghiệm của bất phương trình \(\dfrac{3x-1}{x^2-4}\geq0\) là tập hợp nào sau đây?
| \(T=\left(-2;\dfrac{1}{3}\right]\cup(2;+\infty)\) | |
| \(P=(-\infty;-2)\cup(2;+\infty)\) | |
| \(Q=(-2;2)\) | |
| \(S=(-\infty;-2)\cup\left[\dfrac{1}{3};2\right)\) |
Tìm tập nghiệm \(S\) của bất phương trình \(\dfrac{1}{x-1}\leq1\).
| \(S=(-\infty;2]\) | |
| \(S=(1;+\infty)\) | |
| \(S=(1;2]\) | |
| \(S=(-\infty;1)\cup[2;+\infty)\) |
Tập nghiệm của bất phương trình \(\dfrac{3x}{4-x^2}\geq1\) là
| \((-4;-2)\cup(1;2)\) | |
| \((-\infty;-4]\cup(-2;1]\cup(2;+\infty)\) | |
| \([-4;-2)\cup[1;2)\) | |
| \([-4;-2]\cup[1;2]\) |
Tập nghiệm của bất phương trình \(\dfrac{-3x^2+2x+5}{x-1}\leq0\) là
| \((-\infty;-1]\cup\left[\dfrac{5}{3};+\infty\right)\) | |
| \((-1;1)\cup\left(\dfrac{5}{3};+\infty\right)\) | |
| \([-1;1]\cup\left[\dfrac{5}{3};+\infty\right)\) | |
| \([-1;1)\cup\left[\dfrac{5}{3};+\infty\right)\) |
Có bao nhiêu giá trị nguyên của \(x\) thỏa mãn bất phương trình \(\dfrac{x^4-x^2}{x^2+5x+6}\leq0\)?
| \(0\) | |
| \(2\) | |
| \(1\) | |
| \(3\) |
Tập nghiệm \(S\) của bất phương trình \(\dfrac{x-7}{4x^2-19x+12}>0\) là
| \(S=\left(-\infty;\dfrac{3}{4}\right)\cup(4;7)\) | |
| \(S=\left(\dfrac{3}{4};4\right)\cup(7;+\infty)\) | |
| \(S=\left(\dfrac{3}{4};4\right)\cup(4;+\infty)\) | |
| \(S=\left(\dfrac{3}{4};7\right)\cup(7;+\infty)\) |
Tập nghiệm của bất phương trình \(\dfrac{1}{x-1}\geq\dfrac{1}{x+1}\) là
| \((-1;1)\) | |
| \((-\infty;-1)\cup(1;+\infty)\) | |
| \((-\infty;-1]\cup[1;+\infty)\) | |
| \((-\infty;-1)\) |
Tìm tất cả các nghiệm của bất phương trình \((2x-3)(5-3x)>0\).
| \(x<\dfrac{3}{2},\,x>\dfrac{5}{3}\) | |
| \(x>\dfrac{5}{3}\) | |
| \(\dfrac{3}{2}< x<\dfrac{5}{3}\) | |
| \(x<\dfrac{3}{2}\) |
Giải bất phương trình \(x^3+3x^2-6x-8\geq0\).
| \(S=[-4;-1]\cup[2;+\infty)\) | |
| \(S=(-4;-1)\cup(2;+\infty)\) | |
| \(S=[-1;+\infty)\) | |
| \(S=(-\infty;-4]\cup[-1;2]\) |
Tập nghiệm của bất phương trình \(x\left(16-x^2\right)\geq 0\) là
| \([-4;4]\) | |
| \([-4;0]\cup[4;+\infty)\) | |
| \((-4;0)\cup(4;+\infty)\) | |
| \((-\infty;-4]\cup[0;4]\) |
Tìm tập nghiệm của bất phương trình \(\dfrac{x-1}{x+2}\leq0\).
| \((-2;1]\) | |
| \((-\infty;-2)\cup[1;+\infty)\) | |
| \((-\infty;-2)\cup(1;+\infty)\) | |
| \([-2;1]\) |
Cho biểu thức \(f(x)=\dfrac{(x-3)(x+2)}{x^2-1}\). Có tất cả bao nhiêu giá trị nguyên âm của \(x\) thỏa mãn \(f(x)<1\)?
| \(1\) | |
| \(2\) | |
| \(3\) | |
| \(4\) |
Cho biểu thức \(f(x)=\dfrac{1}{x}+\dfrac{2}{x+4}-\dfrac{3}{x+3}\). Tìm tập hợp tất cả các giá trị của \(x\) sao cho \(f(x)<0\).
| \((-12;-4)\cup(-3;0)\) | |
| \([-12;-4)\cup(-3;0)\) | |
| \((-\infty;-12)\cup(-4;-3)\cup(0;+\infty)\) | |
| \((-\infty;-4)\cup(-3;0)\) |
Cho biểu thức \(f(x)=\dfrac{-4}{3x+1}-\dfrac{3}{2-x}\). Tìm tập hợp tất cả các giá trị của \(x\) sao cho \(f(x)>0\).
| \(\left(-\dfrac{11}{5};-\dfrac{1}{3}\right)\cup[2;+\infty)\) | |
| \(\left(-\dfrac{11}{5};-\dfrac{1}{3}\right)\cup(2;+\infty)\) | |
| \(\left(-\infty;-\dfrac{11}{5}\right]\cup\left(-\dfrac{1}{3};2\right)\) | |
| \(\left(-\infty;-\dfrac{11}{5}\right)\cup\left(-\dfrac{1}{3};2\right)\) |
Cho biểu thức \(f(x)=1-\dfrac{2-x}{3x-2}\). Tìm tập hợp tất cả các giá trị của \(x\) sao cho \(f(x)\leq0\).
| \(\left(\dfrac{2}{3};1\right)\) | |
| \(\left(-\infty;\dfrac{2}{3}\right)\cup(1;+\infty)\) | |
| \(\left(\dfrac{2}{3};1\right]\) | |
| \((-\infty;1)\cup\left(\dfrac{2}{3};+\infty\right)\) |
Cho biểu thức \(f(x)=\dfrac{2-x}{x+1}+2\). Tìm tập hợp tất cả các giá trị của \(x\) sao cho \(f(x)<0\).
| \((-\infty;-1)\) | |
| \((-1;+\infty)\) | |
| \((-4;-1)\) | |
| \((-\infty;-4)\cup(-1;+\infty)\) |
Bất phương trình \(\dfrac{1}{x-1}+\dfrac{2}{x-2}>0\) có tập nghiệm là
| \(\left(1;\dfrac{4}{3}\right]\cup(2;+\infty)\) | |
| \(\left(1;\dfrac{4}{3}\right)\cup(2;+\infty)\) | |
| \((-\infty;1)\cup\left[\dfrac{4}{3};2\right)\) | |
| \(\left(\dfrac{4}{3};2\right)\cup(-\infty;1)\) |
Tìm tập xác định của hàm số $y=\sqrt{\dfrac{x^2+4x+5}{2x^2+3x+1}}$.
| $\left(-\infty;-1\right]\cup\left[-\dfrac{1}{2};+\infty\right)$ | |
| $\left[-1;-\dfrac{1}{2}\right]$ | |
| $\left(-\infty;-1\right)\cup\left(-\dfrac{1}{2};+\infty\right)$ | |
| $\left(-1;-\dfrac{1}{2}\right)$ |
Tập nghiệm của bất phương trình $$x^2+\left(\sqrt{3}+\sqrt{2}\right)x+\sqrt{6}\leq0$$là đoạn \([m;n]\). Tính \(m^2-n^2\).
| \(m^2-n^2=\sqrt{3}-\sqrt{2}\) | |
| \(m^2-n^2=\sqrt{2}-\sqrt{3}\) | |
| \(m^2-n^2=1\) | |
| \(m^2-n^2=-1\) |