Cho hàm số $f(x)$ thỏa $f(1)=\dfrac{1}{3}$ và $f'(x)=\big[xf(x)\big]^2$ với mọi $x\in\mathbb{R}$. Giá trị $f(2)$ bằng
| $\dfrac{2}{3}$ | |
| $\dfrac{3}{2}$ | |
| $\dfrac{16}{3}$ | |
| $\dfrac{3}{16}$ |
Trong không gian $Oxyz$, mặt phẳng $x+\sqrt{2}y-z+3=0$ cắt mặt cầu $x^2+y^2+z^2=5$ theo giao tuyến là một đường tròn. Chu vi đường tròn đó bằng
| $\pi\sqrt{11}$ | |
| $3\pi$ | |
| $\pi\sqrt{15}$ | |
| $\pi\sqrt{7}$ |
Có bao nhiêu số phức $z=a+bi$ với $a,\,b$ là các số tự nhiên thuộc đoạn $[2;9]$ và tổng $a+b$ chia hết cho $3$?
| $42$ | |
| $27$ | |
| $21$ | |
| $18$ |
Cho hàm số $f(x)$ liên tục trên đoạn $[1;2]$. Biết $f(2)=a$ và $\displaystyle\displaystyle\int\limits_{1}^{2}(x-1)f'(x)\mathrm{\,d}x=b$. Tích phân $\displaystyle\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x$ có giá trị bằng
| $a-b$ | |
| $b-a$ | |
| $a+b$ | |
| $-a-b$ |
Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z}{2}$ cắt mặt phẳng $(P)\colon x-y+2z+3=0$ tại điểm $M(a;b;c)$. Giá trị $P=a+b+c$ bằng
| $5$ | |
| $-2$ | |
| $-5$ | |
| $0$ |
Một ô tô đang chạy với vận tốc $15$ (m/s) thì tăng tốc chuyển động nhanh dần với gia tốc $a=3t-8$ (m/s$^2$), trong đó $t$ là khoảng thời gian tính bằng giây kể từ lúc tăng vận tốc. Hỏi sau $10$ giây tăng tốc, ô tô đi được bao nhiêu mét?
| $150$ | |
| $180$ | |
| $246$ | |
| $250$ |
Trong không gian $Oxyz$, phương trình mặt phẳng chứa trục $Oy$ và qua điểm $A(1;4;-3)$ là
| $3x+z=0$ | |
| $3x+y=0$ | |
| $x+3z=0$ | |
| $3x-z=0$ |
Cho số phức $z=m+1+mi$ với $m\in\mathbb{R}$. Hỏi có bao nhiêu giá trị nguyên của $m\in(-5;5)$ sao cho $|z-2i|>1$?
| $0$ | |
| $4$ | |
| $5$ | |
| $9$ |
Nếu $\displaystyle\displaystyle\int\limits_1^3f(x)\mathrm{\,d}x=3$ thì $\displaystyle\displaystyle\int\limits_1^5f\left(\dfrac{x+1}{2}\right)\mathrm{\,d}x$ bằng
| $\dfrac{3}{2}$ | |
| $3$ | |
| $\dfrac{5}{2}$ | |
| $6$ |
Trong không gian $Oxyz$ cho lăng trụ $ABC.A'B'C'$ có phương trình các mặt phẳng $(ABC)$ và $\left(A'B'C'\right)$ lần lượt là $x-2y+z+2=0$ và $x-2y+z+4=0$. Biết tam giác $ABC$ có diện tích bằng $6$. Thể tích của khối lăng trụ đó bằng
| $6\sqrt{6}$ | |
| $2\sqrt{6}$ | |
| $\dfrac{\sqrt{6}}{3}$ | |
| $\dfrac{4\sqrt{6}}{3}$ |
Cho $\displaystyle\displaystyle\int\limits_0^1\dfrac{\mathrm{d}x}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)$ với $a$, $b$ là các số dương. Giá trị của biểu thức $T=a+b$ là
| $10$ | |
| $7$ | |
| $6$ | |
| $8$ |
Trong không gian $Oxyz$ cho điểm $P(2;-3;1)$. Gọi $A$, $B$, $C$ lần lượt là hình chiếu vuông góc của điểm $P$ trên ba trục tọa độ $Ox$, $Oy$ và $Oz$. Phương trình mặt phẳng đi qua ba điểm $A$, $B$, $C$ là
| $\dfrac{x}{2}+\dfrac{y}{3}+\dfrac{z}{1}=1$ | |
| $2x-3y+z=1$ | |
| $3x-2y+6z=1$ | |
| $3x-2y+6z-6=0$ |
Trong không gian $Oxyz$, cho hai đường thẳng $\left(d_1\right)\colon\begin{cases} x=1+2t\\ y=2+3t\\ z=3+4t \end{cases}$ ($t\in\mathbb{R}$) và $\left(d_2\right)\colon\dfrac{x-3}{4}=\dfrac{y-5}{6}=\dfrac{z-7}{8}$. Khẳng định nào đúng?
| $\left(d_1\right)\parallel\left(d_2\right)$ | |
| $\left(d_1\right)\equiv(\left(d_2\right)$ | |
| $\left(d_1\right)\perp\left(d_2\right)$ | |
| $\left(d_1\right),\,\left(d_2\right)$ chéo nhau |
Có bao nhiêu số phức $z$ thỏa mãn $z^2+2\overline{z}=0$?
| $0$ | |
| $1$ | |
| $2$ | |
| $4$ |
Trong không gian $Oxyz$, cho hai điểm $A(2;2;-1)$, $B(-4;2;-9)$. Phương trình mặt cầu có đường kính $AB$ là
| $(x+3)^2+y^2+(z+4)^2=5$ | |
| $(x+1)^2+(y-2)^2+(z+5)^2=25$ | |
| $(x+2)^2+(y-4)^2+(z+10)^2=25$ | |
| $(x+1)^2+(y-2)^2+(z+5)^2=5$ |
Biết phương trình $z^2+2z+m=0$ ($m\in\mathbb{R}$) có một nghiệm là $z_1=-1+3i$. Gọi $z_2$ là nghiệm còn lại. Phần ảo của số phức $w=z_1-2z_2$ bằng
| $1$ | |
| $-3$ | |
| $9$ | |
| $-9$ |
Diện tích hình phẳng giới hạn bởi hai parabol $y=x^2+3x-1$ và $y=-x^2+x+3$ được tô đậm trong hình bên có giá trị bằng
| $\displaystyle\displaystyle\int\limits_{-2}^{1}\left(4x+2\right)\mathrm{\,d}x$ | |
| $\displaystyle\displaystyle\int\limits_{-2}^{1}\left(2x^2+2x-4\right)\mathrm{\,d}x$ | |
| $\displaystyle\displaystyle\int\limits_{-2}^{1}\left(4-2x-2x^2\right)\mathrm{\,d}x$ | |
| $\displaystyle\displaystyle\int\limits_{-2}^{1}\left(-4x-2\right)\mathrm{\,d}x$ |
Bằng cách đổi biến số $t=1+\ln x$ thì tích phân $\displaystyle\displaystyle\int\limits_1^\mathrm{e}\dfrac{(1+\ln x)^2}{x}\mathrm{\,d}x$ trở thành
| $\displaystyle\displaystyle\int\limits_1^\mathrm{e}t^2\mathrm{\,d}t$ | |
| $\displaystyle\displaystyle\int\limits_1^2t^2\mathrm{\,d}t$ | |
| $\displaystyle\displaystyle\int\limits_1^4t^2\mathrm{\,d}t$ | |
| $\displaystyle\displaystyle\int\limits_1^2(1+t)^2\mathrm{\,d}t$ |
Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\begin{cases} x=1+t\\ y=a-2t\\ z=bt \end{cases}$ $(t\in\mathbb{R})$ nằm trong mặt phẳng $(P)\colon x+y-z-2=0$. Tổng $a+b$ có giá trị là
| $-3$ | |
| $-1$ | |
| $1$ | |
| $0$ |
Có bao nhiêu số nguyên $a\in(1;17)$ sao cho $\displaystyle\displaystyle\int\limits_1^5\dfrac{\mathrm{d}x}{2x-1}>\ln\left(\dfrac{a}{2}\right)$?
| $4$ | |
| $9$ | |
| $15$ | |
| $0$ |