Ngân hàng bài tập

Giáo viên: Sàng Khôn

SS

Cho hàm số $f(x)$ thỏa $f(1)=\dfrac{1}{3}$ và $f'(x)=\big[xf(x)\big]^2$ với mọi $x\in\mathbb{R}$. Giá trị $f(2)$ bằng

$\dfrac{2}{3}$
$\dfrac{3}{2}$
$\dfrac{16}{3}$
$\dfrac{3}{16}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, mặt phẳng $x+\sqrt{2}y-z+3=0$ cắt mặt cầu $x^2+y^2+z^2=5$ theo giao tuyến là một đường tròn. Chu vi đường tròn đó bằng

$\pi\sqrt{11}$
$3\pi$
$\pi\sqrt{15}$
$\pi\sqrt{7}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Có bao nhiêu số phức $z=a+bi$ với $a,\,b$ là các số tự nhiên thuộc đoạn $[2;9]$ và tổng $a+b$ chia hết cho $3$?

$42$
$27$
$21$
$18$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho hàm số $f(x)$ liên tục trên đoạn $[1;2]$. Biết $f(2)=a$ và $\displaystyle\displaystyle\int\limits_{1}^{2}(x-1)f'(x)\mathrm{\,d}x=b$. Tích phân $\displaystyle\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x$ có giá trị bằng

$a-b$
$b-a$
$a+b$
$-a-b$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z}{2}$ cắt mặt phẳng $(P)\colon x-y+2z+3=0$ tại điểm $M(a;b;c)$. Giá trị $P=a+b+c$ bằng

$5$
$-2$
$-5$
$0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Một ô tô đang chạy với vận tốc $15$ (m/s) thì tăng tốc chuyển động nhanh dần với gia tốc $a=3t-8$ (m/s$^2$), trong đó $t$ là khoảng thời gian tính bằng giây kể từ lúc tăng vận tốc. Hỏi sau $10$ giây tăng tốc, ô tô đi được bao nhiêu mét?

$150$
$180$
$246$
$250$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, phương trình mặt phẳng chứa trục $Oy$ và qua điểm $A(1;4;-3)$ là

$3x+z=0$
$3x+y=0$
$x+3z=0$
$3x-z=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho số phức $z=m+1+mi$ với $m\in\mathbb{R}$. Hỏi có bao nhiêu giá trị nguyên của $m\in(-5;5)$ sao cho $|z-2i|>1$?

$0$
$4$
$5$
$9$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Nếu $\displaystyle\displaystyle\int\limits_1^3f(x)\mathrm{\,d}x=3$ thì $\displaystyle\displaystyle\int\limits_1^5f\left(\dfrac{x+1}{2}\right)\mathrm{\,d}x$ bằng

$\dfrac{3}{2}$
$3$
$\dfrac{5}{2}$
$6$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$ cho lăng trụ $ABC.A'B'C'$ có phương trình các mặt phẳng $(ABC)$ và $\left(A'B'C'\right)$ lần lượt là $x-2y+z+2=0$ và $x-2y+z+4=0$. Biết tam giác $ABC$ có diện tích bằng $6$. Thể tích của khối lăng trụ đó bằng

$6\sqrt{6}$
$2\sqrt{6}$
$\dfrac{\sqrt{6}}{3}$
$\dfrac{4\sqrt{6}}{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho $\displaystyle\displaystyle\int\limits_0^1\dfrac{\mathrm{d}x}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)$ với $a$, $b$ là các số dương. Giá trị của biểu thức $T=a+b$ là

$10$
$7$
$6$
$8$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$ cho điểm $P(2;-3;1)$. Gọi $A$, $B$, $C$ lần lượt là hình chiếu vuông góc của điểm $P$ trên ba trục tọa độ $Ox$, $Oy$ và $Oz$. Phương trình mặt phẳng đi qua ba điểm $A$, $B$, $C$ là

$\dfrac{x}{2}+\dfrac{y}{3}+\dfrac{z}{1}=1$
$2x-3y+z=1$
$3x-2y+6z=1$
$3x-2y+6z-6=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho hai đường thẳng $\left(d_1\right)\colon\begin{cases} x=1+2t\\ y=2+3t\\ z=3+4t \end{cases}$ ($t\in\mathbb{R}$) và $\left(d_2\right)\colon\dfrac{x-3}{4}=\dfrac{y-5}{6}=\dfrac{z-7}{8}$. Khẳng định nào đúng?

$\left(d_1\right)\parallel\left(d_2\right)$
$\left(d_1\right)\equiv(\left(d_2\right)$
$\left(d_1\right)\perp\left(d_2\right)$
$\left(d_1\right),\,\left(d_2\right)$ chéo nhau
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Có bao nhiêu số phức $z$ thỏa mãn $z^2+2\overline{z}=0$?

$0$
$1$
$2$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho hai điểm $A(2;2;-1)$, $B(-4;2;-9)$. Phương trình mặt cầu có đường kính $AB$ là

$(x+3)^2+y^2+(z+4)^2=5$
$(x+1)^2+(y-2)^2+(z+5)^2=25$
$(x+2)^2+(y-4)^2+(z+10)^2=25$
$(x+1)^2+(y-2)^2+(z+5)^2=5$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết phương trình $z^2+2z+m=0$ ($m\in\mathbb{R}$) có một nghiệm là $z_1=-1+3i$. Gọi $z_2$ là nghiệm còn lại. Phần ảo của số phức $w=z_1-2z_2$ bằng

$1$
$-3$
$9$
$-9$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Diện tích hình phẳng giới hạn bởi hai parabol $y=x^2+3x-1$ và $y=-x^2+x+3$ được tô đậm trong hình bên có giá trị bằng

$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(4x+2\right)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(2x^2+2x-4\right)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(4-2x-2x^2\right)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(-4x-2\right)\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Bằng cách đổi biến số $t=1+\ln x$ thì tích phân $\displaystyle\displaystyle\int\limits_1^\mathrm{e}\dfrac{(1+\ln x)^2}{x}\mathrm{\,d}x$ trở thành

$\displaystyle\displaystyle\int\limits_1^\mathrm{e}t^2\mathrm{\,d}t$
$\displaystyle\displaystyle\int\limits_1^2t^2\mathrm{\,d}t$
$\displaystyle\displaystyle\int\limits_1^4t^2\mathrm{\,d}t$
$\displaystyle\displaystyle\int\limits_1^2(1+t)^2\mathrm{\,d}t$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\begin{cases} x=1+t\\ y=a-2t\\ z=bt \end{cases}$ $(t\in\mathbb{R})$ nằm trong mặt phẳng $(P)\colon x+y-z-2=0$. Tổng $a+b$ có giá trị là

$-3$
$-1$
$1$
$0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Có bao nhiêu số nguyên $a\in(1;17)$ sao cho $\displaystyle\displaystyle\int\limits_1^5\dfrac{\mathrm{d}x}{2x-1}>\ln\left(\dfrac{a}{2}\right)$?

$4$
$9$
$15$
$0$
1 lời giải Sàng Khôn
Lời giải Tương tự