Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

B

Nếu \(t=\sqrt{x^2+3}\) thì tích phân \(I=\displaystyle\int\limits_{1}^{2}x\sqrt{x^2+3}\mathrm{\,d}x\) trở thành

\(I=\displaystyle\int\limits_{2}^{\sqrt{7}}t\mathrm{\,d}t\)
\(I=\displaystyle\int\limits_{2}^{7}t^2\mathrm{\,d}t\)
\(I=\displaystyle\int\limits_{2}^{\sqrt{7}}t^2\mathrm{\,d}t\)
\(I=\displaystyle\int\limits_{2}^{\sqrt{7}}t^3\mathrm{\,d}t\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(\displaystyle\int\limits_{1}^{2}\dfrac{\mathrm{d}x}{(x+1)(2x+1)}=a\ln2+b\ln3+c\ln5\). Khi đó giá trị \(a+b+c\) bằng

\(1\)
\(0\)
\(2\)
\(-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tích phân \(\displaystyle\int\limits_{0}^{1}(3x+1)(x+3)\mathrm{\,d}x\) bằng

\(6\)
\(5\)
\(12\)
\(9\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính tích phân \(I=\displaystyle\int\limits_{0}^{1}(x+1)^2\mathrm{\,d}x\).

\(I=\dfrac{1}{2}\)
\(I=\dfrac{1}{3}\)
\(I=\dfrac{7}{3}\)
\(I=-\dfrac{1}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tích phân \(\displaystyle\int\limits_{1}^{2}\dfrac{\mathrm{d}x}{2x+3}\) bằng

\(\dfrac{1}{2}\ln\dfrac{7}{5}\)
\(\ln\dfrac{7}{5}\)
\(2\ln\dfrac{7}{5}\)
\(\dfrac{1}{2}\ln35\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị của \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\sin x\mathrm{\,d}x\) bằng

\(1\)
\(0\)
\(-1\)
\(\dfrac{\pi}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(f(x)\) liên tục trên đoạn \([0;10]\) thỏa mãn \(\displaystyle\int\limits_{0}^{10}f(x)\mathrm{\,d}x=7\) và \(\displaystyle\int\limits_{2}^{6}f(x)\mathrm{\,d}x=3\). Tính \(P=\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{6}^{10}f(x)\mathrm{\,d}x\).

\(P=4\)
\(P=10\)
\(P=-6\)
\(P=7\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x=-1\), \(\displaystyle\int\limits_{0}^{3}f(x)\mathrm{\,d}x=5\). Tính \(\displaystyle\int\limits_{1}^{3}f(x)\mathrm{\,d}x\).

\(5\)
\(4\)
\(1\)
\(6\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Giả sử hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\cdot\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?

\(3< f(5)<4\)
\(2< f(5)<3\)
\(1< f(5)<2\)
\(4< f(5)<5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(f(x)\) thỏa mãn \(f'(x)=x\mathrm{e}^x\) và \(f(0)=2\). Tính \(f(1)\).

\(f(1)=8-2\mathrm{e}\)
\(f(1)=\mathrm{e}\)
\(f(1)=3\)
\(f(1)=5-2\mathrm{e}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Họ nguyên hàm của hàm số \(f(x)=x\mathrm{e}^{2x}\) là

\(F(x)=2\mathrm{e}^{2x}\left(x-\dfrac{1}{2}\right)+C\)
\(F(x)=2\mathrm{e}^{2x}(x-2)+C\)
\(F(x)=\dfrac{1}{2}\mathrm{e}^{2x}(x-2)+C\)
\(F(x)=\dfrac{1}{2}\mathrm{e}^{2x}\left(x-\dfrac{1}{2}\right)+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(F(x)\) là một nguyên hàm của hàm số \(f(x)=\dfrac{1}{2x+1}\), biết \(F(0)=2\). Tính \(F(1)\).

\(F(1)=\dfrac{1}{2}\ln3+2\)
\(F(1)=\ln3+2\)
\(F(1)=2\ln3-2\)
\(F(1)=\dfrac{1}{2}\ln3-2\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm nguyên hàm của hàm số \(f(x)=\dfrac{1}{1-2x}\) trên khoảng \(\left(-\infty;\dfrac{1}{2}\right)\).

\(\dfrac{1}{2}\ln|2x-1|+C\)
\(\dfrac{1}{2}\ln(1-2x)+C\)
\(\ln|2x-1|+C\)
\(-\dfrac{1}{2}\ln|2x-1|+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Nguyên hàm của hàm số \(f(x)=\dfrac{1}{2\sqrt{2x+1}}\) có dạng

\(\sqrt{2x+1}+C\)
\(\dfrac{1}{(2x+1)\sqrt{2x+1}}+C\)
\(2\sqrt{2x+1}+C\)
\(\dfrac{1}{2}\sqrt{2x+1}+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm họ nguyên hàm của hàm số \(f(x)=3x-\sin x\).

\(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{3x^2}{2}+\cos x+C\)
\(\displaystyle\int f(x)\mathrm{\,d}x=3+\cos x+C\)
\(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{3x^2}{2}-\cos x+C\)
\(\displaystyle\int f(x)\mathrm{\,d}x=3x^2+\cos x+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm nguyên hàm của hàm số \(f(x)=x+\dfrac{1}{x}\).

\(\displaystyle\int f(x)\mathrm{\,d}x=\ln x+\dfrac{1}{2}x^2+C\)
\(\displaystyle\int f(x)\mathrm{\,d}x=\ln|x|+x^2+C\)
\(\displaystyle\int f(x)\mathrm{\,d}x=\ln|x|+\dfrac{1}{2}x^2+C\)
\(\displaystyle\int f(x)\mathrm{\,d}x=\ln x+x^2+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong các khẳng định sau, khẳng định nào sai?

\(\displaystyle\int\dfrac{1}{x+1}\mathrm{\,d}x=\ln|x+1|+C\) (\(\forall x\neq-1\))
\(\displaystyle\int\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin2x+C\)
\(\displaystyle\int\mathrm{e}^{2x}\mathrm{\,d}x=\dfrac{\mathrm{e}^{2x}}{2}+C\)
\(\displaystyle\int2^x\mathrm{\,d}x=2^x\ln2+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.

\(M\left(0;0;1\right)\)
\(M\left(2;-4;-1\right)\)
\(M\left(4;0;3\right)\)
\(M\left(0;-1;0\right)\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=9\) và \(M\left(x_0;y_0;z_0\right)\in\left(S\right)\) sao cho \(A=x_0+2y_0+2z_0\) đạt giá trị nhỏ nhất. Khi đó \(x_0+y_0+z_0\) bằng

\(2\)
\(-1\)
\(-2\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho mặt phẳng \(\left(P\right)\colon2x+2y-z-1=0\). Mặt phẳng nào sau đây song song với \(\left(P\right)\) và cách \(\left(P\right)\) một khoảng bằng \(3\)? 

\(\left(Q\right)\colon2x+2y-z+10=0\)
\(\left(Q\right)\colon2x+2y-z+4=0\)
\(\left(Q\right)\colon2x+2y-z+8=0\)
\(\left(Q\right)\colon2x+2y-z-8=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự