Hàm số $y=x^3-6x^2+1$ nghịch biến trên khoảng
| $(-1;+\infty)$ | |
| $(1;5)$ | |
| $(-\infty;1)$ | |
| $(0;4)$ |
Hàm số nào dưới đây nghịch biến trên tập $\mathbb{R}$?
| $y=3x^3-x$ | |
| $y=-2x^4-x$ | |
| $y=-2x^3+3$ | |
| $y=-x^4+2$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
| $y=3x^3-x$ | |
| $y=-2x^4-x$ | |
| $y=-2x^3+3$ | |
| $y=-x^4+2$ |
Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.
| $\left(-\infty;-\dfrac{14}{15}\right)$ | |
| $\left(-\infty;-\dfrac{14}{15}\right]$ | |
| $\left[-2;-\dfrac{14}{15}\right]$ | |
| $\left[-\dfrac{14}{15};+\infty\right)$ |
Cho hàm số $f\left(x\right)=x^3-2x^2+mx-3$ . Tìm $m$ để $f'\left(x\right)< 0$ với mọi $x\in\left(0;2\right)$.
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
| $y=-x^3-x$ | |
| $y=-x^4-x^2$ | |
| $y=-x^3+x$ | |
| $y=\dfrac{x+2}{x-1}$ |
Cho hàm số $$y=2x^3-3(3m+1)x^2+6\left(2m^2+m\right)x-12m^2+3m+1.$$Tính tổng tất cả giá trị nguyên dương của tham số \(m\) để hàm số nghịch biến trên khoảng \((1;3)\).
| \(0\) | |
| \(3\) | |
| \(1\) | |
| \(2\) |
Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-(m+1)x^2+(4m-8)x+2$$nghịch biến trên \(\mathbb{R}\).
| \(9\) | |
| \(7\) | |
| Vô số | |
| \(8\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=(m-1)x^3+(m-1)x^2-(2m+1)x+5$$nghịch biến trên tập xác định.
| \(-\dfrac{5}{4}\leq m\leq1\) | |
| \(-\dfrac{2}{7}\leq m<1\) | |
| \(-\dfrac{7}{2}\leq m<1\) | |
| \(-\dfrac{2}{7}\leq m\leq1\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-mx^2+(2m-3)x-m+2$$nghịch biến trên \(\mathbb{R}\).
| \(m\in(-\infty;-3)\cup(1;+\infty)\) | |
| \(m\in[-3;1]\) | |
| \(m\in(-\infty;1]\) | |
| \(m\in(-3;1)\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}+mx^2-(2m+3)x+4$$nghịch biến trên \(\mathbb{R}\).
| \(-1\leq m\leq3\) | |
| \(-3< m<1\) | |
| \(-1< m<3\) | |
| \(-3\leq m\leq1\) |
Hàm số nào sau đây nghịch biến trên \(\mathbb{R}\)?
| \(y=x^3-3x^2+4\) | |
| \(y=-x^4-2x^2-3\) | |
| \(y=x^3+3x\) | |
| \(y=-x^3+3x^2-3x+2\) |
Hàm số \(y=x^3+3x^2-4\) nghịch biến trên khoảng
| \((-\infty;-2)\) | |
| \((0;+\infty)\) | |
| \((-2;+\infty)\) | |
| \((-2;0)\) |
Cho hàm số $y=f(x)$ là hàm đa thức bậc ba và có đồ thị như hình vẽ.

Khẳng định nào sau đây là sai?
| Hàm số đồng biến trên $(1;+\infty)$ | |
| Hàm số đồng biến trên $(-\infty;-1)\cup(1;+\infty)$ | |
| Hàm số đồng biến trên $(-\infty;-1)$ | |
| Hàm số nghịch biến trên $(-1;1)$ |
Có tât cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?
| $8$ | |
| $9$ | |
| $7$ | |
| $6$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
| $y=\mathrm{e}^x$ | |
| $y=\big(\sqrt{2}\big)^x$ | |
| $y=\left(\dfrac{4}{3}\right)^x$ | |
| $y=\left(\dfrac{1}{3}\right)^x$ |
Cho hàm số $f(x)$ có bảng xét dấu của đạo hàm như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
| $(-\infty;2)$ | |
| $(-\infty;-1)$ | |
| $(-1;2)$ | |
| $(-1;+\infty)$ |
Số giá trị nguyên của tham số $m$ để hàm số $y=x^3-(m+1)x^2+3x+1$ đồng biến trên $\mathbb{R}$ là
| $4$ | |
| $6$ | |
| $5$ | |
| $7$ |
Cho hàm số $y=f(x)$ có $f'(x)$ liên tục trên $\mathbb{R}$ và đồ thị $f'(x)$ như hình bên.

Hàm số đã cho nghịch biến trên khoảng nào sau đây?
| $(-\infty;0)$ | |
| $(-1;1)$ | |
| $(1;4)$ | |
| $(1;+\infty)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
| $(-\infty;1)$ | |
| $(0;1)$ | |
| $(-1;0)$ | |
| $(-2;+\infty)$ |