Cho hàm số $y=f(x)$ xác thực trên tập số thực $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Đặt $g(x)=f(x)-x$, hàm số $g(x)$ nghịch biến trên khoảng
| $(1;+\infty)$ | |
| $(-1;2)$ | |
| $(2;+\infty)$ | |
| $(-\infty;-1)$ |
Cho hàm số $y=f(x)$ có đạo hàm, liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.

Hàm số $g(x)=\big[f(x)\big]^2$ nghịch biến trên khoảng nào sau đây?
| $(-1;1)$ | |
| $\left(0;\dfrac{5}{2}\right)$ | |
| $\left(\dfrac{5}{2};4\right)$ | |
| $(-2;-1)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có đồ thị hàm $f'(x)$ như hình vẽ.

Tìm khoảng nghịch biến của hàm số $g(x)=f\big(x-x^2\big)$.
| $\left(-\dfrac{1}{2};+\infty\right)$ | |
| $\left(-\dfrac{3}{2};+\infty\right)$ | |
| $\left(-\infty;\dfrac{3}{2}\right)$ | |
| $\left(\dfrac{1}{2};+\infty\right)$ |
Cho hàm bậc bốn $y=f(x)$ có đồ thị $f'(x)$ như hình vẽ bên.

Hàm số $y=f(1-3x)-4$ nghịch biến trên khoảng
| $\left(-\dfrac{1}{3};\dfrac{1}{3}\right)$ | |
| $(0;2)$ | |
| $(-\infty;-1)$ | |
| $\left(\dfrac{1}{3};\dfrac{2}{3}\right)$ |

Cho hàm số \(f(x)\). Hàm số \(y=f'(x)\) có đồ thị như hình trên. Hàm số \(g(x)=f(1-2x)+x^2-x\) nghịch biến trên khoảng nào dưới đây?
| \(\left(1;\dfrac{3}{2}\right)\) | |
| \(\left(0;\dfrac{1}{2}\right)\) | |
| \(\left(-2;-1\right)\) | |
| \(\left(2;3\right)\) |
Cho hàm số \(y=f(x)\) có đồ thị hàm số \(y=f'(x)\) như hình vẽ.

Hàm số \(y=f(3-2x)\) nghịch biến trên khoảng nào sau đây:
| \((-1;+\infty)\) | |
| \((0;2)\) | |
| \((-\infty;-1)\) | |
| \((1;3)\) |
Cho hàm số $f(x)$ có bảng xét dấu của đạo hàm như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
| $(-\infty;2)$ | |
| $(-\infty;-1)$ | |
| $(-1;2)$ | |
| $(-1;+\infty)$ |
Cho hàm số $f(x)$ có bảng xét dấu của đạo hàm như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
| $(-\infty;2)$ | |
| $(-\infty;-1)$ | |
| $(1;2)$ | |
| $(-1;+\infty)$ |
Hình bên là đồ thị hàm số $y=f'(x)$.

Hỏi hàm số $y=f(x)$ đồng biến trên khoảng nào dưới đây?
| $(0;1)$ và $(2;+\infty)$ | |
| $(1;2)$ | |
| $(2;+\infty)$ | |
| $(0;1)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ.

Hàm số $g(x)=\big[f(3-x)\big]^2$ nghịch biến trên khoảng nào trong các khoảng sau?
| $(-2;5)$ | |
| $(1;2)$ | |
| $(2;5)$ | |
| $(5;+\infty)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$. Biết hàm số $f'(x)$ liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.

Hàm số $g(x)=f\left(\sqrt{x^2+1}\right)$ đồng biến trên khoảng
| $\left(-\infty;-\sqrt{3}\right)$ và $\left(0;\sqrt{3}\right)$ | |
| $\left(-\infty;-\sqrt{3}\right)$ và $\left(\sqrt{3};+\infty\right)$ | |
| $\left(-\sqrt{3};0\right)$ và $\left(\sqrt{3};+\infty\right)$ | |
| $\left(-\infty;-\sqrt{3}\right)$ và $\left(0;+\infty\right)$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$. Đồ thị hàm số $f'(x)$ được cho như hình vẽ.

Hàm số $g(x)=4f(x)+x^2-4x+2022$ đồng biến trên khoảng nào sau đây?
| $[-2;0]$ và $[2;+\infty)$ | |
| $(-\infty;-2]$ và $[0;2]$ | |
| $[-2;2]$ | |
| $(-\infty;-2]$ và $[2;+\infty)$ |
Cho hàm số $f$ có đạo hàm liên tục trên $(-1;3)$. Bảng biến thiên của hàm số $f'(x)$ như hình vẽ.

Hàm số $g(x)=f\left(1-\dfrac{x}{2}\right)+x$ nghịch biến trên khoảng nào trong các khoảng sau?
| $(-4;-2)$ | |
| $(2;4)$ | |
| $(-2;0)$ | |
| $(0;2)$ |
Biết hàm số $y=\dfrac{x+a}{x+1}$ ($a$ là số thực cho trước, $a\ne1$) có đồ thị như trong hình bên.
Mệnh đề nào dưới đây đúng?
| $y'< 0,\,\forall x\ne-1$ | |
| $y'>0,\,\forall x\ne-1$ | |
| $y'< 0,\,\forall x\in\mathbb{R}$ | |
| $y'>0,\,\forall x\in\mathbb{R}$ |
Cho hàm số $y=f(x)$ có đồ thị là đường cong trong hình bên.
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
| $(0;1)$ | |
| $(-\infty;0)$ | |
| $(0;+\infty)$ | |
| $(-1;1)$ |

Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình trên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
| \((-1;1)\) | |
| \((-2;2)\) | |
| \((1;+\infty)\) | |
| \((-\infty;1)\) |
Cho hàm số \(y=f(x)\). Biết rằng \(f(x)\) có đạo hàm \(f'(x)\) với đồ thị như hình vẽ.

Khẳng định nào sau đây đúng về hàm số \(y=f(x)\)?
| Hàm số đồng biến trên khoảng \((-\infty;-1)\) | |
| Hàm số đồng biến trên khoảng \((-1;0)\) | |
| Hàm số đồng biến trên khoảng \((1;2)\) | |
| Hàm số nghịch biến trên khoảng \((0;+\infty)\) |
Cho hàm số \(y=f(x)\). Biết rằng \(f(x)\) có đạo hàm \(f'(x)\) với đồ thị như hình vẽ.

Khẳng định nào sau đây sai?
| Hàm số \(y=f(x)\) nghịch biến trên khoảng \((-\infty;-2)\) | |
| Hàm số \(y=f(x)\) đồng biến trên khoảng \((1;+\infty)\) | |
| Hàm số \(y=f(x)\) luôn tăng trên khoảng \((-1;1)\) | |
| Hàm số \(y=f(x)\) giảm trên đoạn có độ dài bằng \(2\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:

Hàm số nghịch biến trên khoảng nào sau đây?
| \((-1;0)\) | |
| \((-1;1)\) | |
| \((-\infty;-1)\) | |
| \((0;+\infty)\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:

Hàm số nghịch biến trên khoảng nào sau đây?
| \((-\infty;2)\) | |
| \((0;2)\) | |
| \((2;+\infty)\) | |
| \((0;+\infty)\) |