Ngân hàng bài tập

Bài tập tương tự

S

Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\dfrac{3}{4}x^4-(m-1)x^2-\dfrac{1}{4x^4}$ đồng biến trên khoảng $(0;+\infty)$?

$4$
$2$
$1$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị hàm số nào sau đây có đúng $1$ đường tiệm cận ngang?

$y=\dfrac{\sqrt{2-x^2}}{x+3}$
$y=\dfrac{4x-3}{x^2-2x}$
$y=\dfrac{\sqrt{x^2+1}}{5x-3}$
$y=\dfrac{x^2-x}{x+1}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y=\dfrac{x-1}{x^2-2x-3}$ là

$4$
$3$
$2$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là

$y'=\dfrac{1-\ln2x}{x^2}$
$y'=\dfrac{\ln2x}{2x}$
$y'=\dfrac{\ln2x}{x^2}$
$y'=\dfrac{1}{2x}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm giá trị nhỏ nhất của hàm số $y=x+\dfrac{3}{x}-4$ trên đoạn $[1;5]$.

$\dfrac{8}{5}$
$4-2\sqrt{3}$
$0$
$2\sqrt{3}-4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)=\dfrac{2x+3}{(x-1)(x-2)}$. Chọn khẳng định đúng.

$f(x)$ không liên tục tại $x_0=3$
$f(x)$ liên tục tại $x_0=3$
$f(x)$ liên tục tại $x_0=1$
$f(x)$ liên tục tại $x_0=2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị nhỏ nhất của hàm số $f(x)=x^2+\dfrac{2}{x}$ trên đoạn $\left[\dfrac{1}{2};3\right]$ bằng

$4$
$2$
$1$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đồ thị hàm số nào sau đây có tiệm cận ngang?

$y=\dfrac{1-x^2}{x}$
$y=\dfrac{\sqrt{x^2-1}}{x}$
$y=\dfrac{x^2-1}{x}$
$y=\dfrac{\sqrt{1-x^2}}{x}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

$\lim\limits_{x\to0}\dfrac{\mathrm{e}^x-1}{3x}$ bằng

$0$
$1$
$3$
$\dfrac{1}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y=\dfrac{x-1}{x^2-2x-3}$ là

$4$
$3$
$2$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là

$y'=\dfrac{1-\ln2x}{x^2}$
$y'=\dfrac{\ln2x}{2x}$
$y'=\dfrac{\ln2x}{x^2}$
$y'=\dfrac{1}{2x}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm giá trị nhỏ nhất của hàm số $y=x+\dfrac{3}{x}-4$ trên đoạn $[1;5]$.

$\dfrac{8}{5}$
$4-2\sqrt{3}$
$0$
$2\sqrt{3}-4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong các hàm số sau, hàm số nào là hàm số chẵn?

$y=\sin2x$
$y=x\cos x$
$y=\cos x\cdot\cot x$
$y=\cot x\cdot\sin x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong các hàm số sau, hàm số nào là hàm số chẵn?

$y=\sin x$
$y=\cos x$
$y=\tan x$
$y=\cot x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Tìm $m$ để phương trình $\dfrac{2\sin x+\cos x+1}{\sin x-2\cos x+3}=m$ có nghiệm.

$\dfrac{1}{2}\leq m\leq2$
$m\geq2$
$m\leq-\dfrac{1}{2}$
$-\dfrac{1}{2}\leq m\leq2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Hàm số nào sau đây là hàm số lẻ?

$y=\cos^3x$
$y=\sin x+\cos^3x$
$y=\sin x+\tan^3x$
$\tan^2x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong các hàm số sau đây, hàm số nào là hàm số chẵn?

$y=\cos2x$
$y=\cot2x$
$y=\tan2x$
$y=\sin2x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập xác định của hàm số $y=\dfrac{2}{\sqrt{2-\sin x}}$ là

$(2;+\infty)$
$\mathbb{R}\setminus\{2\}$
$\mathbb{R}$
$[2;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là

$\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$
$\{k2\pi,\,k\in\mathbb{Z}\}$
$\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập xác định của hàm số $y=\sin\dfrac{x}{x+1}$ là

$\mathscr{D}=(-\infty;-1)\cup(0;+\infty)$
$\mathscr{D}=(-1;+\infty)$
$\mathscr{D}=\mathbb{R}$
$\mathscr{D}=\mathbb{R}\setminus\{-1\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự