Cho hàm số $y=-x^2+4x+1$. Khẳng định nào sau đây sai?
| Hàm số nghịch biến trên khoảng $(2;+\infty)$ và đồng biến trên khoảng $(-\infty;2)$ | |
| Hàm số nghịch biến trên khoảng $(4;+\infty)$ và đồng biến trên khoảng $(-\infty;4)$ | |
| Hàm số đồng biến trên khoảng $(-\infty;-1)$ | |
| Hàm số nghịch biến trên khoảng $(3;+\infty)$ |
Hàm số nào dưới đây đồng biến trên \((-\infty;+\infty)\)?
| \(y=\dfrac{x-1}{x}\) | |
| \(y=2x^3\) | |
| \(y=x^2+1\) | |
| \(y=x^4+5\) |
Hàm số \(y=x^2+4x+1\) đồng biến trên khoảng
| \((-\infty;-2)\) | |
| \((-2;+\infty)\) | |
| \((2;+\infty)\) | |
| \((-\infty;+\infty)\) |
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\dfrac{3}{4}x^4-(m-1)x^2-\dfrac{1}{4x^4}$ đồng biến trên khoảng $(0;+\infty)$?
| $4$ | |
| $2$ | |
| $1$ | |
| $3$ |
Hàm số $y=x^3-6x^2+1$ nghịch biến trên khoảng
| $(-1;+\infty)$ | |
| $(1;5)$ | |
| $(-\infty;1)$ | |
| $(0;4)$ |
Cho hàm số $y=f(x)$ là hàm đa thức bậc ba và có đồ thị như hình vẽ.

Khẳng định nào sau đây là sai?
| Hàm số đồng biến trên $(1;+\infty)$ | |
| Hàm số đồng biến trên $(-\infty;-1)\cup(1;+\infty)$ | |
| Hàm số đồng biến trên $(-\infty;-1)$ | |
| Hàm số nghịch biến trên $(-1;1)$ |
Cho hàm số $y=f(x)$ có đồ thị như hình vẽ.

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
| $(-1;1)$ | |
| $(-2;0)$ | |
| $(-2;-1)$ | |
| $(0;2)$ |
Có tât cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?
| $8$ | |
| $9$ | |
| $7$ | |
| $6$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
| $y=\mathrm{e}^x$ | |
| $y=\big(\sqrt{2}\big)^x$ | |
| $y=\left(\dfrac{4}{3}\right)^x$ | |
| $y=\left(\dfrac{1}{3}\right)^x$ |
Cho hàm số $f(x)$ có bảng xét dấu của đạo hàm như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
| $(-\infty;2)$ | |
| $(-\infty;-1)$ | |
| $(-1;2)$ | |
| $(-1;+\infty)$ |
Hàm số nào dưới đây nghịch biến trên tập $\mathbb{R}$?
| $y=3x^3-x$ | |
| $y=-2x^4-x$ | |
| $y=-2x^3+3$ | |
| $y=-x^4+2$ |
Số giá trị nguyên của tham số $m$ để hàm số $y=x^3-(m+1)x^2+3x+1$ đồng biến trên $\mathbb{R}$ là
| $4$ | |
| $6$ | |
| $5$ | |
| $7$ |
Cho hàm số $y=f(x)$ có $f'(x)$ liên tục trên $\mathbb{R}$ và đồ thị $f'(x)$ như hình bên.

Hàm số đã cho nghịch biến trên khoảng nào sau đây?
| $(-\infty;0)$ | |
| $(-1;1)$ | |
| $(1;4)$ | |
| $(1;+\infty)$ |
Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên dưới.

Hàm số đã cho đồng biến trên khoảng nào sau đây?
| $(2;+\infty)$ | |
| $(-2;2)$ | |
| $(0;2)$ | |
| $(-\infty;2)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
| $(-\infty;1)$ | |
| $(0;1)$ | |
| $(-1;0)$ | |
| $(-2;+\infty)$ |
Cho hàm số $y=f(x)$ xác thực trên tập số thực $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Đặt $g(x)=f(x)-x$, hàm số $g(x)$ nghịch biến trên khoảng
| $(1;+\infty)$ | |
| $(-1;2)$ | |
| $(2;+\infty)$ | |
| $(-\infty;-1)$ |
Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=x(x-4)$, $\forall x\in\mathbb{R}$. Khẳng định nào dưới đây đúng?
| $f(4)>f(0)$ | |
| $f(0)>f(2)$ | |
| $f(5)>f(6)$ | |
| $f(4)>f(2)$ |
Hàm số nào dưới đây có bảng biến thiên như sau?

| $y=\dfrac{x+2}{x}$ | |
| $y=-x^3+3x+1$ | |
| $y=x^4-3x^2$ | |
| $y=-2x^2+1$ |
Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
| $(-\infty;0)$ | |
| $(2;+\infty)$ | |
| $(0;+\infty)$ | |
| $(-1;2)$ |
Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$
| $21$ | |
| $10$ | |
| $8$ | |
| $2$ |