Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
| \(3\) | |
| \(2\) | |
| \(4\) | |
| \(5\) |
Giá trị nhỏ nhất của hàm số $y=\dfrac{2\sin x+3}{\sin x+1}$ trên $\left[0;\dfrac{\pi}{2}\right]$ là
| $5$ | |
| $2$ | |
| $3$ | |
| $\dfrac{5}{2}$ |
Gọi $M$ và $m$ lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số $y=2\cos2x+3$. Tính tổng $M+m$.
| $8$ | |
| $6$ | |
| $7$ | |
| $3$ |
Gọi $M,\,m$ lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=3+2\cos^2\left(x+\dfrac{\pi}{3}\right)$. Khi đó $m^2+M^2$ có giá trị là
| $10$ | |
| $34$ | |
| $8$ | |
| $26$ |
Tập giá trị của hàm số $y=\cos x$ là
| $(-1;1)$ | |
| $[-1;1]$ | |
| $\mathbb{R}$ | |
| $[0;1]$ |
Giá trị lớn nhất $M$, giá trị nhỏ nhất $m$ của hàm số $y=\sin^2x+2\sin x+5$ là
| $M=8;\,m=5$ | |
| $M=5;\,m=2$ | |
| $M=8;\,m=4$ | |
| $M=8;\,m=2$ |
Tìm giá trị nhỏ nhất của hàm số $y=2\cos\left(3x-\dfrac{\pi}{5}\right)+3$.
| $-5$ | |
| $1$ | |
| $3$ | |
| $-1$ |
Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là
| $\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$ | |
| $\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$ | |
| $\{k2\pi,\,k\in\mathbb{Z}\}$ | |
| $\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$ |
Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.
| $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$ | |
| $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$ | |
| $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$ | |
| $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$ |
Cho hàm số $f(x)=\begin{cases} x^2-1 &\text{khi }x\geq2\\ x^2-2x+3 &\text{khi }x< 2 \end{cases}$. Tích phân $\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}f\left(2\sin x+1\right)\cos x\mathrm{\,d}x$ bằng
| $\dfrac{23}{3}$ | |
| $\dfrac{23}{6}$ | |
| $\dfrac{17}{6}$ | |
| $\dfrac{17}{3}$ |
Tìm đạo hàm của hàm số $y=\dfrac{\cos4x}{2}+3\sin4x$.
| $y'=12\cos4x-2\sin4x$ | |
| $y'=12\cos4x+2\sin4x$ | |
| $y'=-12\cos4x+2\sin4x$ | |
| $y'=3\cos4x-\dfrac{1}{2}\sin4x$ |
Tìm đạo hàm của hàm số sau $y=\dfrac{\sin x}{\sin x-\cos x}$.
| $y'=\dfrac{-1}{\left(\sin x-\cos x\right)^2}$ | |
| $y'=\dfrac{1}{\left(\sin x-\cos x\right)^2}$ | |
| $y'=\dfrac{-1}{\left(\sin x+\cos x\right)^2}$ | |
| $y'=\dfrac{1}{\left(\sin x+\cos x\right)^2}$ |
Tìm đạo hàm của hàm số $f\left(x\right)=\sin^22x-\cos3x$.
| $f'\left(x\right)=2\sin4x-3\sin3x$ | |
| $f'\left(x\right)=2\sin4x+3\sin3x$ | |
| $f'\left(x\right)=\sin4x+3\sin3x$ | |
| $f'\left(x\right)=2\sin2x+3\sin3x$ |
Tìm đạo hàm $y'$ của hàm số $y=\sin x+\cos x$.
| $y'=2\cos x$ | |
| $y'=2\sin x$ | |
| $y'=\sin x-\cos x$ | |
| $y'=\cos x-\sin x$ |
Tìm đạo hàm của hàm số $y=2\sin3x+\cos2x$.
| $y'=6\cos3x-2\sin2x$ | |
| $y'=2\cos3x+\sin2x$ | |
| $y'=-6\cos3x+2\sin2x$ | |
| $y'=2\cos3x-\sin2x$ |
Hàm số nào sau đây không có đạo hàm trên $\mathbb{R}$?
| $y=\left|x-1\right|$ | |
| $y=\sqrt{x^2-4x+5}$ | |
| $y=\sin x$ | |
| $y=\sqrt{2-\cos x}$ |
Tính $f'\left(\dfrac{\pi}{2}\right)$ biết $f\left(x\right)=\dfrac{\cos x}{1+\sin x}$.
| $-2$ | |
| $\dfrac{1}{2}$ | |
| $0$ | |
| $-\dfrac{1}{2}$ |
Đạo hàm của hàm số $y=\dfrac{\sin^2x-\cos^2x}{\sin x\cdot\cos x}$ tại điểm $x=\dfrac{\pi}{6}$ bằng
| $-\dfrac{8}{3}$ | |
| $\dfrac{8}{3}$ | |
| $\dfrac{16}{3}$ | |
| $-\dfrac{16}{3}$ |
Dựa vào đồ thị của hàm số \(y=\sin x\). Tìm giá trị lớn nhất của hàm số trên \(\left[-\pi;-\dfrac{\pi}{2}\right]\).

| \(1\) | |
| \(0\) | |
| \(-1\) | |
| \(\dfrac{1}{2}\) |