Ngân hàng bài tập

Bài tập tương tự

C

Trên đường tròn định hướng, mỗi cung lượng giác \(\overset{\curvearrowright}{AB}\) xác định

Một góc lượng giác tia đầu \(OA\), tia cuối \(OB\)
Hai góc lượng giác tia đầu \(OA\), tia cuối \(OB\)
Ba góc lượng giác tia đầu \(OA\), tia cuối \(OB\)
Vô số góc lượng giác tia đầu \(OA\), tia cuối \(OB\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Quy ước chiều dương của một đường tròn định hướng là

Luôn cùng chiều quay kim đồng hồ
Luôn ngược chiều kim đồng hồ
Có thể cùng chiều quay kim đồng hồ mà cũng có thể là ngược chiều quay kim đồng hồ
Không cùng chiều quay kim đồng hồ và cũng không ngược chiều quay kim đồng hồ
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Khẳng định nào sau đây là đúng khi nói về "đường tròn định hướng"?

Mỗi đường tròn là một đường tròn định hướng
Mỗi đường tròn đã chọn một điểm là gốc đều là một đường tròn định hướng
Mỗi đường tròn đã chọn một chiều chuyển động và một điểm là gốc đều là một đường tròn định hướng
Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nghiệm của phương trình $\tan x=\tan\alpha$ là

$x=\alpha+k3\pi,\,k\in\mathbb{Z}$
$x=\alpha+k2\pi,\,k\in\mathbb{Z}$
$x=\alpha$
$x=\alpha+k\pi,\,k\in\mathbb{Z}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Phương trình $\sin x=\sin\alpha$ có nghiệm là

$\left[\begin{array}{l}x=\alpha+k\pi\\ x=\pi-\alpha+k\pi\end{array}\right.$
$\left[\begin{array}{l}x=\alpha+k2\pi\\ x=-\alpha+k2\pi\end{array}\right.$
$\left[\begin{array}{l}x=\alpha+k\pi\\ x=-\alpha+k\pi\end{array}\right.$
$\left[\begin{array}{l}x=\alpha+k2\pi\\ x=\pi-\alpha+k2\pi\end{array}\right.$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm nghiệm của phương trình $\cos x=1$.

$x=\dfrac{\pi}{2}+k\pi\,(k\in\mathbb{Z})$
$x=k2\pi\,(k\in\mathbb{Z})$
$x=k\pi\,(k\in\mathbb{Z})$
$x=\pi+k\pi\,(k\in\mathbb{Z})$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Điều kiện có nghiệm của phương trình $a\sin x+b\cos x=c$ là

$a^2+b^2>c^2$
$a^2+b^2\geq c^2$
$a^2+b^2\leq c^2$
$a^2+b^2< c^2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm công thức nghiệm của phương trình $\sin x=\sin\beta^{\circ}$ trong các công thức nghiệm sau đây:

$\left[\begin{array}{l}x=\beta^{\circ}+k 180^{\circ}\\ x=180^{\circ}-\beta^{\circ}+k 180^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$
$\left[\begin{array}{l}x=\beta^{\circ}+k 360^{\circ}\\ x=-\beta^{\circ}+k 360^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$
$\left[\begin{array}{l}x=\beta^{\circ}+k 180^{\circ}\\ x=-\beta^{\circ}+k 180^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$
$\left[\begin{array}{l}x=\beta^{\circ}+k 360^{\circ}\\ x=180^{\circ}-\beta^{\circ}+k 360^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Phương trình $\sin x=0$ có nghiệm là

$x=k\pi,\,k\in\mathbb{Z}$
$x=\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}$
$x=\dfrac{\pi}{2}+k 2\pi,\,k\in\mathbb{Z}$
$x=\dfrac{-\pi}{2}+k 2\pi,\,k\in\mathbb{Z}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Mệnh đề nào sau đây là sai?

$(\cos x)^{\prime}=-\sin x$
$(\sin x)^{\prime}=-\cos x$
$(\cot x)^{\prime}=-\dfrac{1}{\sin^2x}$
$(\tan x)^{\prime}=\dfrac{1}{\cos^2x}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $f(x)=\dfrac{1}{\cos^2x}$. Trong các khẳng định sau, khẳng định nào đúng?

$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\tan x+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\cot x+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=-\cot x+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=-\tan x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Hàm số $y=\cot x$ có đạo hàm là

$y'=-\dfrac{1}{\cos^2x}$
$y'=-\dfrac{1}{\sin^2x}$
$y'=\tan x$
$y'=\dfrac{1}{\sin^2x}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Hàm số $y=\cos x$ có đạo hàm là

$y'=\sin x$
$y'=\dfrac{1}{\sin x}$
$y'=-\cos x$
$y'=-\sin x$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{\pi}x^2\cos2x\mathrm{d}x$ bằng cách đặt $\begin{cases}u=x^2\\ \mathrm{d}v=\cos2x\mathrm{d}x\end{cases}$. Mệnh đề nào dưới đây đúng?

$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Nguyên hàm $\displaystyle\displaystyle\int\sin x\mathrm{d}x$ là

$-\cos x+C$
$\cos x+C$
$\dfrac{1}{2}\cos2x+C$
$-\cos2x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho phương trình $a\sin x+b\cos x=c$ (với $a$, $b$, $c$ là các tham số). Tìm điều kiện cần và đủ của $a$, $b$, $c$ để phương trình có nghiệm.

$a^2+b^2\ge c^2$
$a^2+b^2\le c^2$
$a+b\ge c$
$a+b\le c$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nghiệm đặc biệt nào sau đây là sai?

\(\sin x=0\Leftrightarrow x=k\pi\)
\(\sin x=-1\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(\sin x=0\Leftrightarrow x=k\dfrac{\pi}{2}\)
\(\sin x=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong các phương trình sau phương trình nào là phương trình bậc nhất đối với hàm số \(y=\sin x\)?

\(2\cos x-1=0\)
\(3\sin x+4=0\)
\(\sqrt{3}\tan x-1=0\)
\(2\sin3x+1=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Phương trình \(\cos x=1\) có họ nghiệm là

\(x=\dfrac{\pi}{2}+k2\pi\,\left(k\in\mathbb{Z}\right)\)
\(x=\dfrac{\pi}{2}+k\pi\,\left(k\in\mathbb{Z}\right)\)
\(x=k2\pi\,\left(k\in\mathbb{Z}\right)\)
\(x=k\pi\,\left(k\in\mathbb{Z}\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho phương trình \(\sin x=a\). Biết rằng \(\sin\alpha=a\) và \(k\in\mathbb{Z}\). Khẳng định nào sau đây đúng?

\(x=\pm\alpha+k2\pi\,\left(k\in\mathbb{Z}\right)\)
\(\left[\begin{array}{l}x=\alpha+k2\pi\\ x=\pi-\alpha+k2\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\)
\(x=\alpha+k\pi\,\left(k\in\mathbb{Z}\right)\)
\(x=\alpha+k2\pi\,\left(k\in\mathbb{Z}\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự