Tích tất cả các nghiệm của phương trình $\ln^2x+2\ln x-3=0$ bằng
| $\dfrac{1}{\mathrm{e}^3}$ | |
| $-2$ | |
| $-3$ | |
| $\dfrac{1}{\mathrm{e}^2}$ |
Cho \(x,\,y\) là các số thực dương thỏa mãn $$\log_9x=\log_6y=\log_4\left(2x+y\right)$$Giá trị của \(\dfrac{x}{y}\) bằng
| \(2\) | |
| \(\dfrac{1}{2}\) | |
| \(\log_2\left(\dfrac{3}{2}\right)\) | |
| \(\log_{\tfrac{3}{2}}2\) |
Cho các số thực dương \(x,\,y\neq1\) thỏa mãn $$\log_xy=\log_yx$$và$$\log_x(x-y)=\log_y(x+y)$$Tính giá trị của \(x^2+xy-y^2\).
| \(x^2+xy-y^2=0\) | |
| \(x^2+xy-y^2=3\) | |
| \(x^2+xy-y^2=1\) | |
| \(x^2+xy-y^2=2\) |
Biết rằng với mọi \(a,\,b\in\mathbb{R}\), phương trình \(\log_2^2x-a\log_2x-3^b=0\) luôn có hai nghiệm phân biệt \(x_1,\,x_2\). Khi đó tích \(x_1\cdot x_2\) bằng
| \(3^a\) | |
| \(a\) | |
| \(b\log_23\) | |
| \(2^a\) |
Phương trình \(\log_{2020}^2x+4\log_{\tfrac{1}{2020}}x+3=0\) có hai nghiệm \(x_1,\;x_2\). Tính giá trị của biểu thức \(x_1\cdot x_2\).
| \(2020\) | |
| \(2020^3\) | |
| \(2020^4\) | |
| \(2020^2\) |
Biết phương trình \(2\log_2x+3\log_x2=7\) có hai nghiệm thực \(x_1< x_2\). Tính giá trị của biểu thức \(T=\left(x_1\right)^{x_2}\).
| \(T=64\) | |
| \(T=32\) | |
| \(T=8\) | |
| \(T=16\) |
Tính tích các nghiệm của phương trình $$\log_3^2x-2\log_3x-7=0$$
| \(2\) | |
| \(-7\) | |
| \(1\) | |
| \(9\) |
Biết rằng phương trình \(\log_2^2(2x)-5\log_2x=0\) có hai nghiệm phân biệt \(x_1,\,x_2\). Tính \(x_1\cdot x_2\).
| \(x_1\cdot x_2=8\) | |
| \(x_1\cdot x_2=5\) | |
| \(x_1\cdot x_2=3\) | |
| \(x_1\cdot x_2=1\) |
Tính tổng các nghiệm của phương trình $$\log_2^2x-\log_29\cdot\log_3x=3$$
| \(2\) | |
| \(-2\) | |
| \(\dfrac{17}{2}\) | |
| \(8\) |
Gọi \(T\) là tổng các nghiệm của phương trình $$\log_{\tfrac{1}{3}}^2x-5\log_3x+4=0$$Tính \(T\).
| \(T=4\) | |
| \(T=-5\) | |
| \(T=84\) | |
| \(T=5\) |
Gọi $x_1,\,x_2$ là các nghiệm của phương trình $2\log2+2\log(x+2)=\log x+4\log3$. Tích $x_1x_2$ bằng
| $\dfrac{15}{2}$ | |
| $\dfrac{9}{2}$ | |
| $6$ | |
| $4$ |
Biết phương trình $2\log_2x+3\log_x2=7$ có $2$ nghiệm thực $x_1,\,x_2$ ($x_1< x_2$). Tính giá trị của biểu thức $T=\big(x_1\big)^{x_2}$.
| $T=32$ | |
| $T=8$ | |
| $T=16$ | |
| $T=64$ |
Tích tất cả các nghiệm của phương trình $\ln\left(x-\dfrac{1}{4}\right)\cdot\ln\left(x+\dfrac{1}{2}\right)\cdot\ln(x+2)=0$ là
| $\dfrac{5}{4}$ | |
| $\dfrac{5}{8}$ | |
| $\dfrac{5}{2}$ | |
| $\dfrac{1}{4}$ |
Gọi $x_1,\,x_2$ là các nghiệm của phương trình $2\log2+2\log(x+2)=\log x+4\log3$. Tích $x_1x_2$ bằng
| $\dfrac{15}{2}$ | |
| $\dfrac{9}{2}$ | |
| $6$ | |
| $4$ |
Biết phương trình $z^2+mz+n=0$ ($m,\,n\in\mathbb{R}$) có một nghiệm là $1-3i$. Tính $n+3m$.
| $4$ | |
| $3$ | |
| $16$ | |
| $6$ |
Gọi $z_1,\,z_2$ là hai nghiệm phân biệt của phương trình $z^2+3z+4=0$ trên tập số phức. Tính giá trị của biểu thức $P=\left|z_1\right|+\left|z_2\right|$.
| $P=4\sqrt{2}$ | |
| $P=2\sqrt{2}$ | |
| $P=4$ | |
| $P=2$ |
Tính tổng các nghiệm thuộc $\left[-2\pi;2\pi\right]$ của phương trình $\sin^2x+\cos2x+2\cos x=0$.
| $2\pi$ | |
| $\dfrac{2\pi}{3}$ | |
| $\dfrac{\pi}{3}$ | |
| $0$ |
Tính tổng các nghiệm của phương trình $2\cos^2x+5\sin x-4=0$ trong $[0;2\pi]$.
| $0$ | |
| $\dfrac{8\pi}{3}$ | |
| $\pi$ | |
| $\dfrac{5\pi}{6}$ |
Tổng các nghiệm của phương trình $\sin^22x+\cos^23x=1$ trên khoảng $0< x<\pi$ là
| $0$ | |
| $\dfrac{\pi}{5}$ | |
| $\pi$ | |
| $2\pi$ |
Phương trình $3\cos x+\cos2x-\cos3x+1=2\sin x\sin2x$ có $\alpha$ là nghiệm lớn nhất thuộc khoảng $(0;2\pi)$. Tìm $\sin2\alpha$.
| $\dfrac{1}{2}$ | |
| $1$ | |
| $-\dfrac{1}{2}$ | |
| $0$ |