Cho hàm số $y=f\left(x\right)$ là đa thức bậc ba có đồ thị như hình bên.
Số nghiệm thuộc khoảng $\left(0;3\pi\right)$ của phương trình $f\left(\cos{x}+1\right)=\cos{x}+1$ là
| $5$ | |
| $4$ | |
| $6$ | |
| $7$ |
Có bao nhiêu số nguyên $y$ sao cho tồn tại số thực $x$ thỏa mãn $\log_2\left(4444+4x-2x^2\right)=2\cdot2^{y^2}+y^2+x^2-2x-2220$?
| $13$ | |
| $9$ | |
| $11$ | |
| $7$ |
Cho $x,\,y$ là các số thực dương thỏa mãn $\log_2x+\log_2(2y)\geq\log_2\left(x^2+2y\right)$. Biết giá trị nhỏ nhất của biểu thức $P=x+2y$ có dạng $a\sqrt{b}+c$ trong đó $a,\,b,\,c$ là các số tự nhiên và $a>1$. Giá trị của $a+b+c$ bằng
| $11$ | |
| $13$ | |
| $9$ | |
| $7$ |
Cho hàm số $f\left(x\right)=\log_2^3x-\log_2x^3+m$ ($m$ là tham số thực). Gọi $S$ là tập hợp tất cả các giá trị của $m$ sao cho $\max\limits_{\left[1;4\right]}\left|f\left(x\right)\right|+\min\limits_{\left[1;4\right]}\left|f\left(x\right)\right|=6$. Tổng bình phương các phần tử của $S$ bằng
| $13$ | |
| $18$ | |
| $5$ | |
| $8$ |
Cho hàm số $f\left(x\right)$ thỏa mãn $f\left(2\right)=25$ và $f'\left(x\right)=4x\sqrt{f\left(x\right)}$ với mọi $x\in\mathbb{R}$. Khi đó $\displaystyle\displaystyle\int\limits_2^3f\left(x\right)\mathrm{\,d}x$ bằng
| $\dfrac{1073}{15}$ | |
| $\dfrac{458}{15}$ | |
| $\dfrac{838}{15}$ | |
| $\dfrac{1016}{15}$ |
Cho hàm số $f(x)=\dfrac{ax-1}{bx+c}\,(a,\,b,\,c\in\mathbb{R})$ có bảng biến thiên như hình bên.
Giá trị của $a-b-c$ thuộc khoảnh nào sau đây?
| $\left(-1;0\right)$ | |
| $\left(-2;-1\right)$ | |
| $\left(1;2\right)$ | |
| $\left(0;1\right)$ |
Có bao nhiêu giá trị nguyên của tham số $m$ sao cho hàm số $y=\dfrac{mx+9}{x+m}$ nghịch biến trên khoảng $\left(0;2\right)$.
| $7$ | |
| $4$ | |
| $5$ | |
| $6$ |
Cho tứ diện $OABC$ có $OA,\,OB,\,OC$ đôi một vuông góc với nhau và $OA=OB=OC=a$. Gọi $D$ là trung điểm của đoạn $BC$. Khoảng cách giữa hai đường thẳng $OD$ và $AB$ bằng
| $\dfrac{a\sqrt{3}}{3}$ | |
| $\dfrac{a\sqrt{6}}{2}$ | |
| $\dfrac{a\sqrt{6}}{3}$ | |
| $\dfrac{a\sqrt{3}}{2}$ |
Cho hình nón $S$ có chiều cao bằng $3a$. Mặt phẳng $\left(P\right)$ đi qua $S$ cắt đường tròn đáy tại hai điểm $A$ và $B$ sao cho $AB=6\sqrt{3}a$. Biết khoảng cách từ tâm của đường tròn đáy đến $\left(P\right)$ bằng $\dfrac{3a\sqrt{2}}{2}$. Thể tích $V$ của khối nón bị giới hạn bởi hình nón đã cho bằng
| $V=54\pi a^3$ | |
| $V=108\pi a^3$ | |
| $V=36\pi a^3$ | |
| $V=18\pi a^3$ |
Gọi $S$ là tập hợp các số tự nhiên có $9$ chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ tập $S$. Xác suất để số được chọn có đúng bốn chữ số lẻ sao cho chữ số $0$ luôn đứng giữa hai chữ số lẻ bằng
| $\dfrac{5}{542}$ | |
| $\dfrac{5}{42}$ | |
| $\dfrac{5}{648}$ | |
| $\dfrac{5}{54}$ |
Một nhóm các chuyên gia y tế đang nghiên cứu và thử nghiệm độ chính xác của một bộ xét nghiệm COVID-19. Giả sử cứ sau $n$ lần thử nghiệm và điều chỉnh bộ xét nghiệm thì tỉ lệ chính xác của bộ xét nghiệm đó tuân theo công thức $S\left(n\right)=\dfrac{1}{1+2020\cdot10^{-0.01n}}$. Hỏi phải tiến hành ít nhất bao nhiêu lần thử nghiệm và điều chỉnh bộ xét nghiệm để đảm bảo tỉ lệ chính xác của bộ xét nghiệm đó đạt trên 90%?
| $426$ | |
| $425$ | |
| $428$ | |
| $427$ |
Cho hàm số $y=f\left(x\right)$ có bảng biến thiên như hình bên.
Số nghiệm của phương trình $2f\left(x\right)-6=0$ là
| $3$ | |
| $0$ | |
| $4$ | |
| $2$ |
Trong không gian $Oxyz$, cho hai điểm $A\left(1;0;3\right)$ và $B\left(-3;2;1\right)$. Mặt phẳng trung trực của đoạn thẳng $AB$ có phương trình là
| $2x-y+z+1=0$ | |
| $2x-y+z-1=0$ | |
| $2x-y+z+7=0$ | |
| $2x-y+z-5=0$ |
Diện tích $S$ của phần hình phẳng được gạch chéo trong hình bên bằng
| $S=\displaystyle\displaystyle\int\limits_0^3\left|\dfrac{1}{2}{x^2}+\left(x^2-7x+12\right)\right|\mathrm{d}x$ | |
| $S=\displaystyle\displaystyle\int\limits_0^2\dfrac{1}{2}{x^2}\rm{d}x-\displaystyle\displaystyle\int\limits_2^3\left(x^2-7x+12\right)\mathrm{d}x$ | |
| $S=\displaystyle\displaystyle\int\limits_0^2\dfrac{1}{2}{x^2}\mathrm{d}x+\displaystyle\displaystyle\int\limits_2^3\left(x^2-7x+12\right)\mathrm{d}x$ | |
| $S=\displaystyle\displaystyle\int\limits_0^3\left|\dfrac{1}{2}{x^2}-\left(x^2-7x+12\right)\right|\mathrm{d}x$ |
Tập nghiệm của bất phương trình $\ln^2x+2\ln{x}-3< 0$ là
| $\left(\mathrm{e};\mathrm{e}^3\right)$ | |
| $\left(\mathrm{e};+\infty\right)$ | |
| $\left(-\infty;\dfrac{1}{\mathrm{e}^3}\right)\cup\left(\mathrm{e};+\infty\right)$ | |
| $\left(\dfrac{1}{\mathrm{e}^3};\mathrm{e}\right)$ |
Xét tích phân $I=\displaystyle\displaystyle\int\limits_1^{\rm{e}^2}\dfrac{\left(1+2\ln x\right)^2}{x}\mathrm{\,d}x$, nếu đặt $t=1+2\ln{x}$ thì $I$ bằng
| $\dfrac{1}{2}\displaystyle\displaystyle\int\limits_1^{e^2}t^2\mathrm{\,d}t$ | |
| $2\displaystyle\displaystyle\int\limits_1^5t^2\mathrm{\,d}t$ | |
| $2\displaystyle\displaystyle\int\limits_1^{e^2}t^2\mathrm{\,d}t$ | |
| $\dfrac{1}{2}\displaystyle\displaystyle\int\limits_1^5t^2\mathrm{\,d}t$ |
Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là
| $\left(5;1\right)$ | |
| $\left(-1;-5\right)$ | |
| $\left(1;5\right)$ | |
| $\left(-5;-1\right)$ |
Cho hình chóp $S.ABCD$ có $SA$ vuông góc với mặt phẳng $\left(ABCD\right)$, $SA=a\sqrt{5}$, tứ giác $ABCD$ là hình chữ nhật, $AB=a$, $AD=2a$. Góc giữa đường thẳng $SC$ và mặt phẳng $\left(ABCD\right)$ bằng
| $45^\circ$ | |
| $30^\circ$ | |
| $60^\circ$ | |
| $90^\circ$ |
Cho hàm số $f(x)$, biết $f'(x)$ có đồ thị như hình bên.
Số điểm cực trị của hàm số $f(x)$ là
| $2$ | |
| $1$ | |
| $3$ | |
| $0$ |
Trong không gian, cho hình chữ nhật $ABCD$ có $BC=3a$ và $AC=5a$. Khi quay hình chữ nhật $ABCD$ quanh cạnh $AD$ thì đường gấp khúc $ABCD$ tạo thành một hình trụ có diện tích toàn phần bằng
| $28\pi a^2$ | |
| $24\pi a^2$ | |
| $56\pi a^2$ | |
| $12\pi a^2$ |