Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

SS

Cho hàm số $y=f\left(x\right)$ là đa thức bậc ba có đồ thị như hình bên.

Số nghiệm thuộc khoảng $\left(0;3\pi\right)$ của phương trình $f\left(\cos{x}+1\right)=\cos{x}+1$ là

$5$
$4$
$6$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Có bao nhiêu số nguyên $y$ sao cho tồn tại số thực $x$ thỏa mãn $\log_2\left(4444+4x-2x^2\right)=2\cdot2^{y^2}+y^2+x^2-2x-2220$?

$13$
$9$
$11$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho $x,\,y$ là các số thực dương thỏa mãn $\log_2x+\log_2(2y)\geq\log_2\left(x^2+2y\right)$. Biết giá trị nhỏ nhất của biểu thức $P=x+2y$ có dạng $a\sqrt{b}+c$ trong đó $a,\,b,\,c$ là các số tự nhiên và $a>1$. Giá trị của $a+b+c$ bằng

$11$
$13$
$9$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f\left(x\right)=\log_2^3x-\log_2x^3+m$ ($m$ là tham số thực). Gọi $S$ là tập hợp tất cả các giá trị của $m$ sao cho $\max\limits_{\left[1;4\right]}\left|f\left(x\right)\right|+\min\limits_{\left[1;4\right]}\left|f\left(x\right)\right|=6$. Tổng bình phương các phần tử của $S$ bằng

$13$
$18$
$5$
$8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f\left(x\right)$ thỏa mãn $f\left(2\right)=25$ và $f'\left(x\right)=4x\sqrt{f\left(x\right)}$ với mọi $x\in\mathbb{R}$. Khi đó $\displaystyle\displaystyle\int\limits_2^3f\left(x\right)\mathrm{\,d}x$ bằng

$\dfrac{1073}{15}$
$\dfrac{458}{15}$
$\dfrac{838}{15}$
$\dfrac{1016}{15}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\dfrac{ax-1}{bx+c}\,(a,\,b,\,c\in\mathbb{R})$ có bảng biến thiên như hình bên.

Giá trị của $a-b-c$ thuộc khoảnh nào sau đây?

$\left(-1;0\right)$
$\left(-2;-1\right)$
$\left(1;2\right)$
$\left(0;1\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Có bao nhiêu giá trị nguyên của tham số $m$ sao cho hàm số $y=\dfrac{mx+9}{x+m}$ nghịch biến trên khoảng $\left(0;2\right)$.

$7$
$4$
$5$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tứ diện $OABC$ có $OA,\,OB,\,OC$ đôi một vuông góc với nhau và $OA=OB=OC=a$. Gọi $D$ là trung điểm của đoạn $BC$. Khoảng cách giữa hai đường thẳng $OD$ và $AB$ bằng

$\dfrac{a\sqrt{3}}{3}$
$\dfrac{a\sqrt{6}}{2}$
$\dfrac{a\sqrt{6}}{3}$
$\dfrac{a\sqrt{3}}{2}$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình nón $S$ có chiều cao bằng $3a$. Mặt phẳng $\left(P\right)$ đi qua $S$ cắt đường tròn đáy tại hai điểm $A$ và $B$ sao cho $AB=6\sqrt{3}a$. Biết khoảng cách từ tâm của đường tròn đáy đến $\left(P\right)$ bằng $\dfrac{3a\sqrt{2}}{2}$. Thể tích $V$ của khối nón bị giới hạn bởi hình nón đã cho bằng

$V=54\pi a^3$
$V=108\pi a^3$
$V=36\pi a^3$
$V=18\pi a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Gọi $S$ là tập hợp các số tự nhiên có $9$ chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ tập $S$. Xác suất để số được chọn có đúng bốn chữ số lẻ sao cho chữ số $0$ luôn đứng giữa hai chữ số lẻ bằng

$\dfrac{5}{542}$
$\dfrac{5}{42}$
$\dfrac{5}{648}$
$\dfrac{5}{54}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một nhóm các chuyên gia y tế đang nghiên cứu và thử nghiệm độ chính xác của một bộ xét nghiệm COVID-19. Giả sử cứ sau $n$ lần thử nghiệm và điều chỉnh bộ xét nghiệm thì tỉ lệ chính xác của bộ xét nghiệm đó tuân theo công thức $S\left(n\right)=\dfrac{1}{1+2020\cdot10^{-0.01n}}$. Hỏi phải tiến hành ít nhất bao nhiêu lần thử nghiệm và điều chỉnh bộ xét nghiệm để đảm bảo tỉ lệ chính xác của bộ xét nghiệm đó đạt trên 90%?

$426$
$425$
$428$
$427$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=f\left(x\right)$ có bảng biến thiên như hình bên.

Số nghiệm của phương trình $2f\left(x\right)-6=0$ là

$3$
$0$
$4$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho hai điểm $A\left(1;0;3\right)$ và $B\left(-3;2;1\right)$. Mặt phẳng trung trực của đoạn thẳng $AB$ có phương trình là

$2x-y+z+1=0$
$2x-y+z-1=0$
$2x-y+z+7=0$
$2x-y+z-5=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Diện tích $S$ của phần hình phẳng được gạch chéo trong hình bên bằng

$S=\displaystyle\displaystyle\int\limits_0^3\left|\dfrac{1}{2}{x^2}+\left(x^2-7x+12\right)\right|\mathrm{d}x$
$S=\displaystyle\displaystyle\int\limits_0^2\dfrac{1}{2}{x^2}\rm{d}x-\displaystyle\displaystyle\int\limits_2^3\left(x^2-7x+12\right)\mathrm{d}x$
$S=\displaystyle\displaystyle\int\limits_0^2\dfrac{1}{2}{x^2}\mathrm{d}x+\displaystyle\displaystyle\int\limits_2^3\left(x^2-7x+12\right)\mathrm{d}x$
$S=\displaystyle\displaystyle\int\limits_0^3\left|\dfrac{1}{2}{x^2}-\left(x^2-7x+12\right)\right|\mathrm{d}x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tập nghiệm của bất phương trình $\ln^2x+2\ln{x}-3< 0$ là

$\left(\mathrm{e};\mathrm{e}^3\right)$
$\left(\mathrm{e};+\infty\right)$
$\left(-\infty;\dfrac{1}{\mathrm{e}^3}\right)\cup\left(\mathrm{e};+\infty\right)$
$\left(\dfrac{1}{\mathrm{e}^3};\mathrm{e}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Xét tích phân $I=\displaystyle\displaystyle\int\limits_1^{\rm{e}^2}\dfrac{\left(1+2\ln x\right)^2}{x}\mathrm{\,d}x$, nếu đặt $t=1+2\ln{x}$ thì $I$ bằng

$\dfrac{1}{2}\displaystyle\displaystyle\int\limits_1^{e^2}t^2\mathrm{\,d}t$
$2\displaystyle\displaystyle\int\limits_1^5t^2\mathrm{\,d}t$
$2\displaystyle\displaystyle\int\limits_1^{e^2}t^2\mathrm{\,d}t$
$\dfrac{1}{2}\displaystyle\displaystyle\int\limits_1^5t^2\mathrm{\,d}t$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là

$\left(5;1\right)$
$\left(-1;-5\right)$
$\left(1;5\right)$
$\left(-5;-1\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABCD$ có $SA$ vuông góc với mặt phẳng $\left(ABCD\right)$, $SA=a\sqrt{5}$, tứ giác $ABCD$ là hình chữ nhật, $AB=a$, $AD=2a$. Góc giữa đường thẳng $SC$ và mặt phẳng $\left(ABCD\right)$ bằng

$45^\circ$
$30^\circ$
$60^\circ$
$90^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $f(x)$, biết $f'(x)$ có đồ thị như hình bên.

Số điểm cực trị của hàm số $f(x)$ là

$2$
$1$
$3$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian, cho hình chữ nhật $ABCD$ có $BC=3a$ và $AC=5a$. Khi quay hình chữ nhật $ABCD$ quanh cạnh $AD$ thì đường gấp khúc $ABCD$ tạo thành một hình trụ có diện tích toàn phần bằng

$28\pi a^2$
$24\pi a^2$
$56\pi a^2$
$12\pi a^2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự