Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

B

Cho đường tròn \(\left(\mathscr{C}\right)\colon\left(x-3\right)^2+\left(y+3\right)^2=1\). Qua điểm \(M\left(4;-3\right)\) có thể kẻ được bao nhiêu đường thẳng tiếp xúc với đường tròn \(\left(\mathscr{C}\right)\)?

\(0\)
\(1\)
\(2\)
Vô số
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Có bao nhiêu đường thẳng đi qua gốc tọa độ \(O\) và tiếp xúc với đường tròn \(\left(\mathscr{C}\right)\colon x^2+y^2-2x+4y-11=0\)?

\(0\)
\(2\)
\(1\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm tập nghiệm \(S\) của phương trình \(z^4-7z^2-18=0\) trên tập số phức.

\(S=\left\{-2;9\right\}\)
\(S=\left\{-\sqrt{2};\sqrt{2};-3i;3i\right\}\)
\(S=\left\{-4i;4i;-81;81\right\}\)
\(S=\left\{-3;3;-\sqrt{2}i;\sqrt{2}i\right\}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Kí hiệu \(z_0\) là nghiệm phức có phần ảo dương của phương trình \(2z^2-6z+15=0\). Trên mặt phẳng tọa độ, tìm tọa độ của điểm \(M\) biểu diễn số phức \(z_0\).

\(M\left(-\dfrac{3}{2};\dfrac{\sqrt{21}}{2}i\right)\)
\(M\left(-\dfrac{3}{2};\dfrac{\sqrt{21}}{2}\right)\)
\(M\left(\dfrac{3}{2};\dfrac{\sqrt{21}}{2}\right)\)
\(M\left(\dfrac{3}{2};\dfrac{\sqrt{21}}{2}i\right)\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm nghiệm phức có phần ảo âm của phương trình $$z^2-4z+13=0.$$

\(z=-2-3i\)
\(z=2-3i\)
\(z=-2+3i\)
\(z=2+3i\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm một căn bậc hai của \(-8\).

\(-2\sqrt{2}i\)
\(-2\sqrt{2}\)
\(2\sqrt{2}\)
\(2\sqrt{-2}i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(|z-2+3i|=4\).

Đường tròn tâm \(I(2;-3)\) và bán kính \(R=4\)
Đường tròn tâm \(I(-2;3)\) và bán kính \(R=16\)
Đường tròn tâm \(I(-2;3)\) và bán kính \(R=4\)
Đường tròn tâm \(I(2;-3)\) và bán kính \(R=16\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm số phức \(z\) thỏa mãn $$z-1+4i=2i\overline{z}.$$

\(z=\dfrac{9}{5}-\dfrac{2}{5}i\)
\(z=-\dfrac{9}{5}+\dfrac{2}{5}i\)
\(z=\dfrac{7}{3}+\dfrac{2}{3}i\)
\(z=-\dfrac{7}{3}-\dfrac{2}{3}i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm số phức \(z\) thỏa mãn $$(3-5i)z+(2+3i)=-4i.$$

\(z=\dfrac{2}{17}-\dfrac{8}{17}i\)
\(z=\dfrac{29}{34}-\dfrac{31}{34}i\)
\(z=\dfrac{1}{17}-\dfrac{21}{17}i\)
\(z=-\dfrac{1}{34}-\dfrac{13}{34}i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm số phức liên hợp của số phức $$z=(11-3i)+(5+2i)(1-i).$$

\(\overline{z}=14+6i\)
\(\overline{z}=18+6i\)
\(\overline{z}=18-6i\)
\(\overline{z}=14-6i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm phần thực và phần ảo của số phức $$z=\dfrac{6-3i}{2+5i}.$$

Phần thực là \(-\dfrac{3}{29}\) và phần ảo là \(-\dfrac{36}{29}\)
Phần thực là \(-\dfrac{3}{29}\) và phần ảo là \(-\dfrac{36}{29}i\)
Phần thực là \(\dfrac{1}{7}\) và phần ảo là \(\dfrac{12}{7}\)
Phần thực là \(\dfrac{1}{7}\) và phần ảo là \(\dfrac{12}{7}i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính môđun của số phức $$z=\dfrac{\left(-2-3i\right)\left(-1+2i\right)}{2+i}.$$

\(|z|=\sqrt{13}\)
\(|z|=\sqrt{5}\)
\(|z|=13\)
\(|z|=5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai số phức \(z_1=\dfrac{1}{2}-2i\) và \(z_2=4-i\). Tính môđun của số phức \(z=z_1\cdot z_2\).

\(|z|=\dfrac{\sqrt{34}}{2}\)
\(|z|=\dfrac{289}{4}\)
\(|z|=\dfrac{17}{2}\)
\(|z|=-\dfrac{17}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai số phức \(z_1=-4+\sqrt{2}i\) và \(z_2=1-\sqrt{3}i\). Tìm phần ảo của số phức \(z_1-z_2\).

Phần ảo là \(\sqrt{5}\)
Phần ảo là \(\sqrt{2}-\sqrt{3}\)
Phần ảo là \(\sqrt{2}+\sqrt{3}\)
Phần ảo là \(-5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai số phức \(z_1=3+2i\) và \(z_2=1-5i\). Tìm phần thực và phần ảo của số phức \(z_1+z_2\).

Phần thực là \(4\) và phần ảo là \(3\)
Phần thực là \(4\) và phần ảo là \(-3i\)
Phần thực là \(4\) và phần ảo là \(3i\)
Phần thực là \(4\) và phần ảo là \(-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức \(z=(2m-1)+(m^2-4)i\), \(m\in\mathbb{R}\). Tìm \(m\) để số phức \(z\) là số thuần ảo.

\(m=2,\,m=-2\)
\(m=2\)
\(m=-\dfrac{1}{2}\)
\(m=\dfrac{1}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trên mặt phẳng tọa độ, tìm tọa độ của điểm \(M\) biểu diễn số phức \(z=5-i\).

\(M(5;0)\)
\(M(5;-1)\)
\(M(0;-5)\)
\(M(5;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm phần thực và phần ảo của số phức \(z=2-3i\).

Phần thực là \(2\) và phần ảo là \(3\)
Phần thực là \(2\) và phần ảo là \(-3\)
Phần thực là \(2\) và phần ảo là \(3i\)
Phần thực là \(2\) và phần ảo là \(-3i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình phẳng \(D\) giới hạn bởi đồ thị hàm số \(y=2x^2+3x\), trục \(Ox\) và hai đường thẳng \(x=0,\,x=1\). Tính thể tích \(V\) của khối tròn xoay được tạo thành khi quay \(D\) quanh trục \(Ox\).

\(V=\dfrac{13}{6}\)
\(V=\dfrac{13\pi}{6}\)
\(V=\dfrac{34\pi}{5}\)
\(V=\dfrac{34}{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình phẳng \(H\) giới hạn bởi đồ thị hàm số \(y=f(x)\) liên tục trên đoạn \([a;b]\), trục \(Ox\) và hai đường thẳng \(x=a,\,x=b\). Thể tích \(V\) của khối tròn xoay được tạo thành khi quay \(H\) quanh trục \(Ox\) là

\(V=\pi\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x\)
\(V=\displaystyle\int\limits_a^b|f(x)|\mathrm{\,d}x\)
\(V=\pi\displaystyle\int\limits_a^b f^2(x)\mathrm{\,d}x\)
\(V=\displaystyle\int\limits_a^b f^2(x)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự