Một tổ 10 người sẽ được chơi hai môn thể thao là cầu lông và bóng bàn. Có 5 bạn đăng ký chơi cầu lông, 4 bạn đăng ký chơi bóng bàn, trong đó có 2 bạn đăng ký chơi cả hai môn. Rút thăm ngẫu nhiên để chọn ra một người trong số 10 người của tổ này. Tính xác suất để chọn được một bạn:
Một túi chứa 5 viên bi xanh và 3 viên bi đỏ. Lấy ngẫu nhiên ra 3 viên bi. Tính xác suất để được ít nhất 1 viên bi xanh.
Lấy ngẫu nhiên 1 thẻ từ một hộp chứa 20 thẻ, được đánh số từ 1 đến 20. Tìm xác suất để thẻ được lấy ra là số
Gieo một đồng xu (cân đối và đồng chất) 3 lần và quan sát sự xuất hiện của mặt sấp (S) và mặt ngửa (N).
Một hộp đựng 4 viên bi xanh, 3 viên bi đỏ và 2 viên bi vàng. Chọn ngẫu nhiên 2 viên bi. Tính xác suất để chọn được 2 viên bi cùng màu.
Cho các số thực \(a,\,b\). Chứng minh rằng $$(a+b)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\geq4.$$
Tìm giá trị lớn nhất \(M\) của hàm số \(f(x)=(6x+3)(5-2x)\) trên đoạn \(\left[-\dfrac{1}{2};\dfrac{3}{2}\right]\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+32}{4(x-2)}\) trên khoảng \((2;+\infty)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{4}{x}+\dfrac{x}{1-x}\) trên khoảng \((0;1)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{(x+2)(x+8)}{x}\) trên khoảng \((0;+\infty)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+2x+2}{x+1}\) trên khoảng \((-1;+\infty)\).
Tìm giá trị lớn nhất của hàm số \(f(x)=\sqrt{(2x+3)(5-2x)}\) trên đoạn \(\left[-\dfrac{3}{2};\dfrac{5}{2}\right]\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=x+\dfrac{2}{x-1}\) trên khoảng \((1;+\infty)\).
Chứng minh rằng với mọi số dương \(a\), \(b\) ta đều có $$\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\geq\sqrt{a}+\sqrt{b}$$
Chứng minh rằng $$\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\geq a+b+c$$với \(a,\,b,\,c\geq0\)
Chứng minh rằng $$2\sqrt{a}+3\sqrt[3]{b}+4\sqrt[4]{c}\geq9\sqrt[9]{abc}$$
Chứng minh rằng $$(1+a)(1+b)(1+c)\geq\left(1+\sqrt[3]{abc}\right)^3$$với \(a,\,b,\,c\geq0\)
Cho \(a,\,b>0\). Chứng minh rằng $$a^5+b^5\geq a^3b^2+a^2b^3$$
Cho \(a,\,b>0\). Chứng minh rằng $$a^3+b^3\geq a^2b+ab^2$$
Cho \(a+b\geq0\). Chứng minh rằng $$\dfrac{a+b}{2}\leq\sqrt[3]{\dfrac{a^3+b^3}{2}}$$