Ngân hàng bài tập

Toán học

C

Cho $u=u(x)$, $v=v(x)$ và $k$ là hằng số. Mệnh đề nào sau đây là sai?

$(k.u)^{\prime}=k.u'$
$\left(\dfrac{1}{v}\right)^{\prime}=-\dfrac{1}{v^2}$
$\left(u^n\right)^{\prime}=n.u^{n-1}.u'$
$\left(\sqrt{u}\right)^{\prime}=\dfrac{u'}{2\sqrt{u}}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Một chất điểm chuyển động có phương trình $s=t^3-2t$ ($t$ tính bằng giây, $s$ tính bằng mét). Tính vận tốc của chất điểm tại thời điểm $t_0=4$ (giây)?

$64$m/s
$46$m/s
$56$m/s
$22$m/s
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $\left(x^5-3x^4+2019\right)^{\prime}=ax^4+bx^3$. Tìm $S=a+b$.

$S=-7$
$S=7$
$S=17$
$S=12$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho $f(x)=\dfrac{x^2-x+2}{x+1}$. Tính $f'(-2)$.

$-3$
$-5$
$1$
$0$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Mệnh đề nào sau đây là sai?

$(\cos x)^{\prime}=-\sin x$
$(\sin x)^{\prime}=-\cos x$
$(\cot x)^{\prime}=-\dfrac{1}{\sin^2x}$
$(\tan x)^{\prime}=\dfrac{1}{\cos^2x}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Tính đạo hàm của hàm số $y=\cot3x$.

$y'=-\dfrac{3}{\sin^2x}$
$y'=\dfrac{3}{\sin^23x}$
$y'=-\dfrac{3}{\sin^33x}$
$y'=-\dfrac{3}{\sin^23x}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Viết phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=-x^3+x$ tại điểm $M(-2;6)$.

$y=-11x-16$
$y=-11x-28$
$y=-11x+28$
$y=-11x+16$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho hàm số $f(x)=x^3-2x^2+x+3$. Nghiệm của bất phương trình $f'(x)< 0$ là

$1< x< 3$
$-1< x< \dfrac{1}{3}$
$\dfrac{1}{3}< x< 1$
$-\dfrac{1}{3}< x< 1$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Ông An muốn làm cửa rào sắt có hình dạng và kích thước như hình vẽ bên, biết đường cong phía trên là một Parabol. Giá $1m^2$ của rào sắt là $700 000$ đồng.

Hỏi ông An phải trả bao nhiêu tiền để làm cái cửa sắt như vậy (làm tròn đến hàng nghìn).

(Cảm ơn tác giả đã vẽ hình và trình bày, cảm ơn TS. Trần Lê Nam đã chia sẻ)

$6 520 000$ đồng
$6 320 000$ đồng
$6 417 000$ đồng
$6 620 000$ đồng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ là hàm liên tục có tích phân trên $[0;2]$ thỏa điều kiện $f\left(x^2\right)=6x^4+\displaystyle\displaystyle\int\limits_{0}^{2}xf(x)\mathrm{\,d}x$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x$.

$I=-8$
$I=-24$
$I=-32$
$I=-6$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Gọi $S$ là tập hợp tất cả các số phức $z$ để số phức $w=|z|-\dfrac{1}{z-1}$ có phần ảo bằng $\dfrac{1}{4}$. Biết rằng $\left|z_1-z_2\right|=3$ với $z_1,\,z_2\in S$, giá trị nhỏ nhất của $\left|z_1+2z_2\right|$ bằng

$\sqrt{5}-\sqrt{3}$
$3\sqrt{5}-3$
$2\sqrt{5}-2\sqrt{3}$
$3\sqrt{5}-3\sqrt{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Trong không gian $Oxyz$, cho hai điểm $M(-2;-2;1)$, $A(1;2;-3)$ và đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Gọi $\overrightarrow{u}=(1;a;b)$ là một vectơ chỉ phương của đường thẳng $\Delta$ đi qua $M$, $\Delta$ vuông góc với đường thẳng $d$ đồng thời cách điểm $A$ một khoảng nhỏ nhất. Giá trị của $a+2b$ là

$1$
$2$
$3$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong không gian $Oxyz$, gọi mặt phẳng $(P)\colon7x+by+cz+d=0$ (với $b,\,c,\,d\in\mathbb{R}$, $c< 0$) đi qua điểm $A(1;3;5)$. Biết mặt phẳng $(P)$ song song với trục $Oy$ và khoảng cách từ gốc tọa độ đến mặt phẳng $(P)$ bằng $3\sqrt{2}$. Tính $T=b+c+d$.

$T=61$
$T=78$
$T=7$
$T=-4$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $f(x)=ax^3+bx^2-36x+c$ ($a\neq0$, $a,\,b,\,c\in\mathbb{R}$), có hai điểm cực trị là $-6$ và $2$. Gọi $y=g(x)$ là đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y=f(x)$. Diện tích hình phẳng giới hạn bởi hai đường $y=f(x)$ và $y=g(x)$ bằng

$160$
$672$
$128$
$64$
2 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho số phức $z=x+iy$ (với $x,\,y\in\mathbb{R}$) thỏa mãn $2z-5i\cdot\overline{z}=-14-7i$. Tính $x+y$.

$1$
$7$
$-1$
$5$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết phương trình $z^2+mz+n=0$ ($m,\,n\in\mathbb{R}$) có một nghiệm là $1-3i$. Tính $n+3m$.

$4$
$3$
$16$
$6$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho $(S)\colon x^2+y^2+z^2-4x-2y+10z-14=0$. Mặt phẳng $(P)\colon-x+4z+5=0$ cắt mặt cầu $(S)$ theo một đường tròn $(\mathscr{C})$. Tọa độ tâm $H$ của $(\mathscr{C})$ là

$H(1;1;-1)$
$H(-3;1;-2)$
$H(9;1;1)$
$H(-7;1;-3)$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Tính nguyên hàm $\displaystyle\displaystyle\int\dfrac{\left(\ln x+2\right)\mathrm{d}x}{x\ln x}$ bằng cách đặt $t=\ln x$ ta được nguyên hàm nào sau đây?

$\displaystyle\displaystyle\int\dfrac{t\mathrm{\,d}t}{t-2}$
$\displaystyle\displaystyle\int(t+2)\mathrm{\,d}t$
$\displaystyle\displaystyle\int\left(1+\dfrac{2}{t}\right)\mathrm{\,d}t$
$\displaystyle\displaystyle\int\dfrac{(t+2)\mathrm{\,d}t}{t^2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, mặt phẳng $(\alpha)$ đi qua hai điểm $A(1;0;0)$, $B(2;2;0)$ và vuông góc với mặt phẳng $(P)\colon x+y+z-2=0$ có phương trình là

$x+y-2z-4=0$
$2x-y-3z-2=0$
$x+y+z-1=0$
$2x-y-z-2=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho $\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{4}}\cos4x\cos x\mathrm{\,d}x=\dfrac{\sqrt{2}}{a}+\dfrac{b}{c}$ với $a,\,b,\,c$ là các số nguyên, $c< 0$ và $\dfrac{b}{c}$ tối giản. Tổng $a+b+c$ bằng

$-77$
$-17$
$103$
$43$
2 lời giải Sàng Khôn
Lời giải Tương tự