Ngân hàng bài tập

Toán học

C

Để chứng minh mệnh đề "$2^n>2n+1$ với mọi số tự nhiên $n\geq3$" bằng phương pháp quy nạp toán học, đầu tiên chúng ta cần chứng minh mệnh đề đúng với

$n=1$
$n=2$
$n=3$
$n=k\geq3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Với số tự nhiên $n$, mệnh đề nào sau đây là đúng?

$3^n>n^2+4n+5,\,\forall n\geq2$
$3^n>n^2+4n+5,\,\forall n\geq3$
$3^n>n^2+4n+5,\,\forall n\geq1$
$3^n>n^2+4n+5,\,\forall n\in\mathbb{N}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Bất đẳng thức $3^n>n^2+4n+5$ đúng với những số tự nhiên nào sau đây?

$n\geq3$
$n\leq3$
$n\geq0$
$n\geq1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Để chứng minh mệnh đề "$3^n>n^2+4n+5$ với mọi số tự nhiên $n\geq3$" bằng phương pháp quy nạp toán học, giả thiết quy nạp là

$3^{k+1}>(k+1)^2+4(k+1)+5$, với $k\geq3$
$3^k>k^2+4k+5$, với $k=3$
$3^k>k^2+4k+5$, với $k\geq3$
$3^k>k^2+4k+5$, với $k\geq1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Để chứng minh mệnh đề "$3^n>n^2+4n+5$ với mọi số tự nhiên $n\geq3$" bằng phương pháp quy nạp toán học, đầu tiên chúng ta cần chứng minh mệnh đề đúng với

$n=1$
$n=2$
$n=3$
$n=k\geq3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong phương pháp quy nạp toán học, sau giả thiết quy nạp "mệnh đề đúng với $n=k$", ta cần chứng minh mệnh đề cũng đúng với

$n=1$
$n=k-1$
$n=k+1$
$n=k+2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.

$\dfrac{5\sqrt{2}}{2}$
$\dfrac{5}{2}$
$\dfrac{2\sqrt{5}}{3}$
$\dfrac{5}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.

$\dfrac{a\sqrt{3}}{4}$
$\dfrac{a\sqrt{3}}{2}$
$a\sqrt{3}$
$\dfrac{a\sqrt{3}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Có tất cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?

$8$
$9$
$7$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho số thực $m$ sao cho đường thẳng $x=m$ cắt đồ thị hàm số $y=\log_2x$ tại $A$ và đồ thị hàm số $y=\log_2(x+3)$ tại $B$ thỏa mãn $AB=3$. Khẳng định nào dưới đây đúng?

$m\in\left(\dfrac{1}{3};\dfrac{1}{2}\right)$
$m\in\left(0;\dfrac{1}{3}\right)$
$m\in\left(\dfrac{2}{3};1\right)$
$m\in\left(\dfrac{1}{2};\dfrac{2}{3}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tập hợp tất cả các giá trị thực của tham số $m$ sao cho đồ thị hàm số $y=x^4-2mx^2+2m^4-m$ có $3$ điểm cực trị đều nằm trên các trục tọa độ.

$\{0;1\}$
$\{1\}$
$\{-1;1\}$
$\{0\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi $x_1,\,x_2$ là các nghiệm của phương trình $2\log2+2\log(x+2)=\log x+4\log3$. Tích $x_1x_2$ bằng

$\dfrac{15}{2}$
$\dfrac{9}{2}$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết đồ thị của hàm số $f(x)=ax^3+bx^2+cx+d$ có hai điểm cực trị là $A(1;1)$ và $B\left(2;\dfrac{4}{3}\right)$. Tính $f(-1)$.

$12$
$7$
$\dfrac{31}{3}$
$\dfrac{16}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.

$\dfrac{a^3\sqrt{7}}{9}$
$\dfrac{a^3\sqrt{7}}{6}$
$\dfrac{a^3\sqrt{7}}{12}$
$\dfrac{a^3\sqrt{7}}{18}$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình trụ có bán kính đáy và chiều cao đều bằng $a$. Gọi $AB$, $CD$ là các dây cung của hai đường tròn đáy sao cho tứ giác $ABCD$ là hình vuông và mặt phẳng $ABCD$ không vuông góc với mặt phẳng đáy. Tính độ dài đoạn thẳng $AB$.

$\dfrac{a\sqrt{5}}{3}$
$\dfrac{a\sqrt{5}}{2}$
$\dfrac{a\sqrt{10}}{2}$
$\dfrac{a\sqrt{10}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình lăng trụ đều $ABC.A'B'C'$ có $AB=a$, $AA'=a\sqrt{3}$. Tính góc tạo bởi đường thẳng $AC'$ và mặt phẳng $(ABC)$.

$60^\circ$
$45^\circ$
$30^\circ$
$75^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ dưới đây:

Số nghiệm của phương trình $f^2(x)-4f(x)+3=0$ là

$5$
$3$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho các số thực $a>1$, $b>1$, $c>1$ thỏa mãn $\dfrac{2}{\log_ac^6}+\dfrac{3}{\log_bc^6}=\dfrac{1}{3}$. Đẳng thức nào dưới đây đúng?

$a^2b^2=c^3$
$a^2b^3=c^2$
$a^3b^2=c^2$
$a^3b^2=c$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA,\,SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?

$\dfrac{V'}{V}=\dfrac{1}{6}$
$\dfrac{V'}{V}=\dfrac{2}{5}$
$\dfrac{V'}{V}=\dfrac{1}{3}$
$\dfrac{V'}{V}=\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho các số thực dương $x,\,y$ thỏa mãn $\ln x+\ln y\geq\ln\big(2x+y^2\big)$. Tìm giá trị nhỏ nhất của biểu thức $S=x+8y$.

$32$
$29$
$25$
$46$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự