Ngân hàng bài tập

Toán học: Hàm số

B

Bảng biến thiên trong hình bên là của hàm số nào trong các hàm số đã cho dưới đây?

$y=\dfrac{3-x}{x+2}$
$y=\dfrac{3x+8}{x+2}$
$y=\dfrac{3x-3}{x+2}$
$y=\dfrac{3-3x}{x+2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tiệm cận đứng của đồ thị hàm số $y=\dfrac{2x-1}{x-3}$ là đường thẳng có phương trình

$x=\dfrac{1}{2}$
$x=\dfrac{1}{3}$
$x=2$
$x=3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong các hàm số sau, hàm số nào không có cực trị?

$y=x^2$
$y=\dfrac{x+2}{2x-1}$
$y=x^4+2x^2+2$
$y=-x^3-x^2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Phát biểu nào sau đây đúng?

Hàm số $y=f(x)$ đạt cực trị tại $x_0$ khi và chỉ khi $x_0$ là nghiệm của đạo hàm
Nếu $f'\big(x_0\big)=0$ và $f''\big(x_0\big)>0$ thì hàm số đạt cực đại tại $x_0$
Nếu $f'\big(x_0\big)=0$ và $f''\big(x_0\big)=0$ thì $x_0$ không phải là cực trị của hàm số $y=f(x)$ đã cho
Nếu $f'(x)$ đổi dấu khi $x$ qua điểm $x_0$ và $y=f(x)$ liên tục tại $x_0$ thì hàm số $y=f(x)$ đạt cực trị tại điểm $x_0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên sau:

Hàm số đã cho nghịch biến trên khoảng nào sau đây?

$(1;3)$
$(-\infty;-2)$
$(0;+\infty)$
$(-2;0)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho đồ thị các hàm số $y=x^\alpha$ và $y=x^\beta$ trên khoảng $(0;+\infty)$.

Mệnh đề nào dưới đây đúng?

$0< \alpha< 1< \beta$
$\alpha< 0< 1< \beta$
$0< \beta< 1< \alpha$
$\beta< 0< 1< \alpha$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Có tất cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?

$8$
$9$
$7$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho số thực $m$ sao cho đường thẳng $x=m$ cắt đồ thị hàm số $y=\log_2x$ tại $A$ và đồ thị hàm số $y=\log_2(x+3)$ tại $B$ thỏa mãn $AB=3$. Khẳng định nào dưới đây đúng?

$m\in\left(\dfrac{1}{3};\dfrac{1}{2}\right)$
$m\in\left(0;\dfrac{1}{3}\right)$
$m\in\left(\dfrac{2}{3};1\right)$
$m\in\left(\dfrac{1}{2};\dfrac{2}{3}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tập hợp tất cả các giá trị thực của tham số $m$ sao cho đồ thị hàm số $y=x^4-2mx^2+2m^4-m$ có $3$ điểm cực trị đều nằm trên các trục tọa độ.

$\{0;1\}$
$\{1\}$
$\{-1;1\}$
$\{0\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết đồ thị của hàm số $f(x)=ax^3+bx^2+cx+d$ có hai điểm cực trị là $A(1;1)$ và $B\left(2;\dfrac{4}{3}\right)$. Tính $f(-1)$.

$12$
$7$
$\dfrac{31}{3}$
$\dfrac{16}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ dưới đây:

Số nghiệm của phương trình $f^2(x)-4f(x)+3=0$ là

$5$
$3$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi $x_1,\,x_2$ là các điểm cực trị của hàm số $y=x^3-2x^2-7x+1$. Tính $x_1^2+x_2^2$.

$\dfrac{44}{9}$
$\dfrac{16}{3}$
$\dfrac{28}{3}$
$\dfrac{58}{9}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

$\lim\limits_{x\to0}\dfrac{\mathrm{e}^x-1}{3x}$ bằng

$0$
$1$
$3$
$\dfrac{1}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y=\dfrac{x-1}{x^2-2x-3}$ là

$4$
$3$
$2$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?

$y=\mathrm{e}^x$
$y=\big(\sqrt{2}\big)^x$
$y=\left(\dfrac{4}{3}\right)^x$
$y=\left(\dfrac{1}{3}\right)^x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là

$y'=\dfrac{1-\ln2x}{x^2}$
$y'=\dfrac{\ln2x}{2x}$
$y'=\dfrac{\ln2x}{x^2}$
$y'=\dfrac{1}{2x}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Đạo hàm của hàm số $y=\big(x^4+3\big)^{\tfrac{1}{3}}$ là

$y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
$y'=\dfrac{1}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
$y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{\tfrac{2}{3}}$
$y'=4x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị của hàm số nào dưới đây có đúng một điểm cực trị?

$y=x^3-2x^2-1$
$y=-x^4+2x^2-1$
$y=x^4-2x^2-1$
$y=x^4+2x^2+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)$ có bảng biến thiên như sau:

Hàm số đã cho đạt cực đại tại

$x=-2$
$x=3$
$x=5$
$x=-3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ và có bảng xét dấu của đạo hàm như sau:

Số điểm cực đại của hàm số đã cho là

$3$
$1$
$2$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự