Cho hàm số $y=\dfrac{ax+b}{cx+1}$ ($a,\,b,\,c\in\mathbb{R}$) có đồ thị như hình bên.

Khi đó $a+b-c$ bằng
| $-2$ | |
| $-1$ | |
| $1$ | |
| $0$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.

Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
| $3$ | |
| $4$ | |
| $1$ | |
| $2$ |
Cho hàm số $y=\dfrac{ax+b}{cx+1}$ ($a,b,c\in\mathbb{R}$) có đồ thị như hình bên.

Khi đó $a+b-c$ bằng
| $-2$ | |
| $-1$ | |
| $1$ | |
| $0$ |
Cho hàm số bậc hai $y=f(x)$ có đồ thị như hình vẽ.

Tìm số nghiệm thực của phương trình $\big|f\big(x^3-2x^2+x\big)\big|=2$.
| $1$ | |
| $3$ | |
| $4$ | |
| $2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.

Tìm số nghiệm thực của phương trình $\big|f\big(x^2-4x\big)\big|=\dfrac{3}{4}$.
| $12$ | |
| $6$ | |
| $10$ | |
| $8$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.

Tìm số nghiệm thực của phương trình $\big|f\big(x^3-3x\big)\big|=2$.
| $12$ | |
| $6$ | |
| $10$ | |
| $8$ |
Cho hàm số $y=f(x)$ có đạo hàm $y=f'(x)$ với đồ thị như hình vẽ.

Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $g(x)=f\big(x^2-8x+m\big)$ có $5$ điểm cực trị.
| $15$ | |
| $16$ | |
| $17$ | |
| $18$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.

Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng
| $2f(0)-1$ | |
| $2f(-1)-4$ | |
| $2f(1)$ | |
| $2f(2)-1$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.

Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng
| $f(2)+\dfrac{2}{3}$ | |
| $f(-1)+\dfrac{2}{3}$ | |
| $\dfrac{2}{3}$ | |
| $f(1)-\dfrac{2}{3}$ |
Cho hàm số $f(x)$ có đồ thị $f'(x)$ như hình vẽ.

Trên đoạn $[-4;3]$, hàm số $g(x)=2f(x)+(1-x)^2$ đạt giá trị nhỏ nhất tại điểm
| $x_0=-4$ | |
| $x_0=-1$ | |
| $x_0=3$ | |
| $x_0=-3$ |
Cho hàm số $y=f(x)$. Đồ thị của hàm số $y=f'(x)$ như hình vẽ.

Đặt $h(x)=f(x)-x$. Mệnh đề nào dưới đây đúng?
| $\min\limits_{[-2;2]}h(x)=h(-2)$ | |
| $\max\limits_{[0;4]}h(x)=h(0)$ | |
| $\min\limits_{[-1;2]}h(x)=h(-1)$ | |
| $h(2)< h(4)< h(0)$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.

Số điểm cực trị của hàm số $g(x)=3f\big(f(x)\big)+4$ là
| $5$ | |
| $3$ | |
| $8$ | |
| $2$ |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị như hình vẽ.

Tìm số điểm cực trị của hàm số $g(x)=f\left(x^2\right)$.
| $5$ | |
| $3$ | |
| $7$ | |
| $11$ |
Cho hàm số $y=f(x)$ có đạo hàm, liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.

Hàm số $g(x)=\big[f(x)\big]^2$ nghịch biến trên khoảng nào sau đây?
| $(-1;1)$ | |
| $\left(0;\dfrac{5}{2}\right)$ | |
| $\left(\dfrac{5}{2};4\right)$ | |
| $(-2;-1)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$. Biết hàm số $f'(x)$ liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.

Hàm số $g(x)=f\left(\sqrt{x^2+1}\right)$ đồng biến trên khoảng
| $\left(-\infty;-\sqrt{3}\right)$ và $\left(0;\sqrt{3}\right)$ | |
| $\left(-\infty;-\sqrt{3}\right)$ và $\left(\sqrt{3};+\infty\right)$ | |
| $\left(-\sqrt{3};0\right)$ và $\left(\sqrt{3};+\infty\right)$ | |
| $\left(-\infty;-\sqrt{3}\right)$ và $\left(0;+\infty\right)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có đồ thị hàm $f'(x)$ như hình vẽ.

Tìm khoảng nghịch biến của hàm số $g(x)=f\big(x-x^2\big)$.
| $\left(-\dfrac{1}{2};+\infty\right)$ | |
| $\left(-\dfrac{3}{2};+\infty\right)$ | |
| $\left(-\infty;\dfrac{3}{2}\right)$ | |
| $\left(\dfrac{1}{2};+\infty\right)$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$. Đồ thị hàm số $f'(x)$ được cho như hình vẽ.

Hàm số $g(x)=4f(x)+x^2-4x+2022$ đồng biến trên khoảng nào sau đây?
| $[-2;0]$ và $[2;+\infty)$ | |
| $(-\infty;-2]$ và $[0;2]$ | |
| $[-2;2]$ | |
| $(-\infty;-2]$ và $[2;+\infty)$ |
Cho hàm bậc bốn $y=f(x)$ có đồ thị $f'(x)$ như hình vẽ bên.

Hàm số $y=f(1-3x)-4$ nghịch biến trên khoảng
| $\left(-\dfrac{1}{3};\dfrac{1}{3}\right)$ | |
| $(0;2)$ | |
| $(-\infty;-1)$ | |
| $\left(\dfrac{1}{3};\dfrac{2}{3}\right)$ |
Cho hàm số bậc bốn $y=f(x)$ thỏa mãn $f(0)=0$. Hàm số $y=f'(x)$ có đồ thị như hình vẽ.
Hàm số $g(x)=\left|2f\big(x^2+x\big)-x^4-2x^3+x^2+2x\right|$ có bao nhiêu cực trị?
| $4$ | |
| $5$ | |
| $6$ | |
| $7$ |
Cho hàm số bậc bốn $f(x)=ax^4+bx^3+cx^2+dx+e$ có đồ thị như hình vẽ.
Số nghiệm của phương trình $f\big(f(x)\big)+1=0$ là
| $3$ | |
| $5$ | |
| $4$ | |
| $6$ |