Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.

Giao tuyến của hai mặt phẳng $(\alpha)$ và $(ABC)$ có tồn tại không, nếu có thì giao tuyến đó đi qua điểm nào?
| $B$ | |
| $A$ | |
| $C$ | |
| Không tồn tại |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.

Mệnh đề nào sau đây là đúng?
| $\Delta\subset(\alpha)$ | |
| $\Delta\cap(\alpha)=A$ | |
| $C\in(\alpha)$ | |
| $\Delta\cap(\alpha)=B$ |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.

Xét mệnh đề "$B=\Delta\ldots\ldots(\alpha)$", hãy chọn ký hiệu thích hợp điền vào dấu "..." để được mệnh đề đúng.
| $\notin$ | |
| $\in$ | |
| $\subset$ | |
| $\cap$ |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.

Xét mệnh đề "$C\ldots\ldots\Delta$", hãy chọn ký hiệu thích hợp điền vào dấu "..." để được mệnh đề đúng.
| $\notin$ | |
| $\in$ | |
| $\subset$ | |
| $\cap$ |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.

Xét mệnh đề "$A\ldots\ldots\Delta$", hãy chọn ký hiệu thích hợp điền vào dấu "..." để được mệnh đề đúng.
| $\notin$ | |
| $\in$ | |
| $\subset$ | |
| $\cap$ |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.

Xét mệnh đề "$A\ldots\ldots(\alpha)$", hãy chọn ký hiệu thích hợp điền vào dấu "..." để được mệnh đề đúng.
| $\notin$ | |
| $\in$ | |
| $\subset$ | |
| $\cap$ |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.

Phần nét đứt trong hình vẽ thể hiện điều gì?
| Phần không tồn tại | |
| Phần thấy được | |
| Phần không thấy được | |
| Phần bị ẩn |
Cho hình lăng trụ có cạnh bên vuông góc với mặt đáy, khi đó các mặt bên của lăng trụ là hình gì?
| Hình chữ nhật | |
| Hình bình hành | |
| Hình thoi | |
| Hình vuông |
Biết rằng $b,\,c$ là hai đường thẳng cắt nhau và cùng nằm trong mặt phẳng $(\alpha)$. Nếu đường thẳng $a$ vuông góc với cả $b$ và $c$ thì
| $a\perp(\alpha)$ | |
| $a\parallel(\alpha)$ | |
| $a\subset(\alpha)$ | |
| $a,\,b,\,c$ đồng quy |
Biết rằng đường thẳng $a$ vuông góc với mặt phẳng $(\alpha)$ và đường thẳng $b$ nằm trên mặt phẳng $(\alpha)$. Kết luận nào sau đây là đúng?
| $a\perp b$ | |
| $a\parallel b$ | |
| $a,\,b$ chéo nhau | |
| $a,\,b$ cắt nhau |
Cho hình chóp đều $S.ABCD$ có chiều cao $a$, $AC=2a$ (tham khảo hình bên).

Khoảng cách từ $B$ đến mặt phẳng $(SCD)$ bằng
| $\dfrac{\sqrt{3}}{3}a$ | |
| $\sqrt{2}a$ | |
| $\dfrac{2\sqrt{3}}{3}a$ | |
| $\dfrac{\sqrt{2}}{2}a$ |
Cho hình chóp $S.ABC$ có đáy là tam giác vuông tại $B$, $SA$ vuông góc với đáy và $SA=AB$ (tham khảo hình bên).

Góc giữa hai mặt phẳng $(SBC)$ và $(ABC)$ bằng
| $60^{\circ}$ | |
| $30^{\circ}$ | |
| $90^{\circ}$ | |
| $45^{\circ}$ |
Cho 5 khẳng định sau về hình lăng trụ. Hỏi có bao nhiêu khẳng định đúng?
| $4$ | |
| $5$ | |
| $3$ | |
| $2$ |
Hai mặt phẳng $(P)$ và $(Q)$ thỏa mãn điều kiện nào sau đây thì $(P)$ và $(Q)$ song song với nhau?
| $(P)$ chứa 2 đường thẳng $a,\,b$ song song mà $a,\,b$ cùng song song với $(Q)$ | |
| $(P)$ chứa 2 đường thẳng $a,\,b$ cắt nhau mà $a,\,b$ cùng song song với $(Q)$ | |
| $(P)$ chứa 2 đường thẳng $a,\,b$ mà $a,\,b$ cùng song song với $(Q)$ | |
| $(P)$ chứa 1 đường thẳng $a$ mà $a$ song song với $(Q)$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông và $SA\perp(ABCD)$.

Khẳng định nào sau đây là đúng?
| $BC\perp(SAB)$ | |
| $BC\perp(SBD)$ | |
| $BC\perp(SCD)$ | |
| $BC\perp(SAC)$ |
Cho hình hộp $ABCD.A'B'C'D'$ (tham khảo hình vẽ).

Khẳng định nào sau đây là đúng?
| $\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB'}=\overrightarrow{BA'}$ | |
| $\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB'}=\overrightarrow{B'D}$ | |
| $\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB'}=\overrightarrow{BD'}$ | |
| $\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB'}=\overrightarrow{BC'}$ |
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB=a$, $BC=2a$ và $AA'=3a$ (tham khảo hình bên).

Khoảng cách giữa hai đường thẳng $BD$ và $A'C'$ bằng
| $a$ | |
| $a\sqrt{2}$ | |
| $2a$ | |
| $3a$ |
Cho hình lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông tại $B$, $AC=2$, $AB=\sqrt{3}$ và $AA'=1$ (tham khảo hình bên).

Góc giữa hai mặt phẳng $(ABC')$ và $(ABC)$ bằng
| $30^\circ$ | |
| $45^\circ$ | |
| $90^\circ$ | |
| $60^\circ$ |
Cho tam giác $ABC$. Có thể xác định được bao nhiêu mặt phẳng chứa tất cả các đỉnh của tam giác $ABC$?
| $1$ | |
| $3$ | |
| $4$ | |
| $2$ |
Trong không gian cho $4$ điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
| $6$ | |
| $3$ | |
| $4$ | |
| $2$ |