Giải bất phương trình $\dfrac{x+11}{5-6x}$.
Giải bất phương trình $\dfrac{1}{x-1}+\dfrac{2}{x-2}>0$.
Giải bất phương trình $\dfrac{x^2-x-6}{2-x}\geq0$.
Hàm số $y=\left(3-x\right)\left(x+2\right)^2\left(x-2\right)^3$ nhận giá trị dương trên khoảng nào dưới đây?
| $\left(-2;2\right)$ | |
| $\left(3;+\infty\right)$ | |
| $\left(2;3\right)$ | |
| $\left(-\infty;-2\right)$ |
Cho biểu thức $f\left(x\right)=\dfrac{1}{3x-6}$. Tìm tập hợp các giá trị $x$ để $f\left(x\right)>0$.
| $\left(-\infty;2\right]$ | |
| $\left(-\infty;2\right)$ | |
| $\left(2;+\infty\right)$ | |
| $\left[2;+\infty\right)$ |
Cho biểu thức $f\left(x\right)=\left(x+5\right)\left(3-x\right)$. Tìm tập hợp các giá trị $x$ để $f\left(x\right)\leq0$.
| $\left(-\infty;-5\right)\cup\left(3;+\infty\right)$ | |
| $\left(3;+\infty\right)$ | |
| $\left(-5;-3\right)$ | |
| $\left(-\infty;-5\right]\cup\left[3;+\infty\right)$ |
Tập nghiệm của bất phương trình \(\dfrac{3x-1}{x^2-4}\geq0\) là tập hợp nào sau đây?
| \(T=\left(-2;\dfrac{1}{3}\right]\cup(2;+\infty)\) | |
| \(P=(-\infty;-2)\cup(2;+\infty)\) | |
| \(Q=(-2;2)\) | |
| \(S=(-\infty;-2)\cup\left[\dfrac{1}{3};2\right)\) |
Tìm tập nghiệm \(S\) của bất phương trình \(\dfrac{1}{x-1}\leq1\).
| \(S=(-\infty;2]\) | |
| \(S=(1;+\infty)\) | |
| \(S=(1;2]\) | |
| \(S=(-\infty;1)\cup[2;+\infty)\) |
Tìm tất cả các nghiệm của bất phương trình \((2x-3)(5-3x)>0\).
| \(x<\dfrac{3}{2},\,x>\dfrac{5}{3}\) | |
| \(x>\dfrac{5}{3}\) | |
| \(\dfrac{3}{2}< x<\dfrac{5}{3}\) | |
| \(x<\dfrac{3}{2}\) |
Cho nhị thức bậc nhất \(f(x)=ax+b\,(a\neq0)\) có bảng xét dấu như hình vẽ bên dưới. Mệnh đề nào sau đây sai?

| Phương trình \(f(x)=0\) có nghiệm \(x=-3\) | |
| \(f(-4)< f(-1)\) | |
| \(f(x)>0\) với mọi \(x\in(-\infty;-3)\) | |
| \(a\) là một số thực âm |
Tập nghiệm của bất phương trình \(\dfrac{-3x^2+2x+5}{x-1}\leq0\) là
| \((-\infty;-1]\cup\left[\dfrac{5}{3};+\infty\right)\) | |
| \((-1;1)\cup\left(\dfrac{5}{3};+\infty\right)\) | |
| \([-1;1]\cup\left[\dfrac{5}{3};+\infty\right)\) | |
| \([-1;1)\cup\left[\dfrac{5}{3};+\infty\right)\) |
Bất phương trình \(\dfrac{1}{x-1}+\dfrac{2}{x-2}>0\) có tập nghiệm là
| \(\left(1;\dfrac{4}{3}\right]\cup(2;+\infty)\) | |
| \(\left(1;\dfrac{4}{3}\right)\cup(2;+\infty)\) | |
| \((-\infty;1)\cup\left[\dfrac{4}{3};2\right)\) | |
| \(\left(\dfrac{4}{3};2\right)\cup(-\infty;1)\) |
Tập nghiệm của bất phương trình \(\dfrac{x-1}{x+2}<0\) là
| \((-2;1)\) | |
| \((-2;1]\) | |
| \((-\infty;-2)\cup(1;+\infty)\) | |
| \((-\infty;-2)\cup[1;+\infty)\) |
Biểu thức \(f(x)=2x-3\) nhận giá trị dương trên khoảng
| \((2;+\infty)\) | |
| \(\left(\dfrac{2}{3};+\infty\right)\) | |
| \(\left(-\infty;\dfrac{3}{2}\right)\) | |
| \(\left(\dfrac{3}{2};+\infty\right)\) |
Có bao nhiêu giá trị nguyên dương của \(x\) thỏa mãn $$\dfrac{x+3}{x^2-4}-\dfrac{1}{x+2}<\dfrac{2x}{2x-x^2}?$$
| \(0\) | |
| \(2\) | |
| \(1\) | |
| \(3\) |
Tập nghiệm \(S\) của bất phương trình \(\dfrac{x-7}{4x^2-19x+12}>0\) là
| \(S=\left(-\infty;\dfrac{3}{4}\right)\cup(4;7)\) | |
| \(S=\left(\dfrac{3}{4};4\right)\cup(7;+\infty)\) | |
| \(S=\left(\dfrac{3}{4};4\right)\cup(4;+\infty)\) | |
| \(S=\left(\dfrac{3}{4};7\right)\cup(7;+\infty)\) |
Giải bất phương trình \(x^3+3x^2-6x-8\geq0\).
| \(S=[-4;-1]\cup[2;+\infty)\) | |
| \(S=(-4;-1)\cup(2;+\infty)\) | |
| \(S=[-1;+\infty)\) | |
| \(S=(-\infty;-4]\cup[-1;2]\) |
Biểu thức \(f(x)=\dfrac{11x+3}{-x^2+5x-7}\) nhận giá trị dương khi và chỉ khi
| \(x\in\left(-\dfrac{3}{11};+\infty\right)\) | |
| \(x\in\left(-\dfrac{3}{11};5\right)\cup\left(\dfrac{5}{4};3\right)\) | |
| \(x\in\left(-\infty;-\dfrac{3}{11}\right)\) | |
| \(x\in\left(-5;-\dfrac{3}{11}\right)\) |
Biểu thức \(\left(3x^2-10x+3\right)(4x-5)\) âm khi và chỉ khi
| \(x\in\left(-\infty;\dfrac{5}{4}\right)\) | |
| \(x\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{5}{4};3\right)\) | |
| \(x\in\left(\dfrac{1}{3};\dfrac{5}{4}\right)\cup(3;+\infty)\) | |
| \(x\in\left(\dfrac{1}{3};3\right)\) |
Để phương trình \((m-1)x^2+3mx+m^2-m-6=0\) có hai nghiệm trái dấu thì
| \(m\in(-\infty;-2)\cup(1;3)\) | |
| \(m\in(-\infty;-2]\cup[1;3]\) | |
| \(m\in(-2;1)\cup(3;+\infty)\) | |
| \(m\in[-2;1]\cup[3;+\infty)\) |