Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ.

Hàm số $g(x)=\big[f(3-x)\big]^2$ nghịch biến trên khoảng nào trong các khoảng sau?
| $(-2;5)$ | |
| $(1;2)$ | |
| $(2;5)$ | |
| $(5;+\infty)$ |
Cho hàm số $f$ có đạo hàm liên tục trên $(-1;3)$. Bảng biến thiên của hàm số $f'(x)$ như hình vẽ.

Hàm số $g(x)=f\left(1-\dfrac{x}{2}\right)+x$ nghịch biến trên khoảng nào trong các khoảng sau?
| $(-4;-2)$ | |
| $(2;4)$ | |
| $(-2;0)$ | |
| $(0;2)$ |

Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình trên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
| \((-1;1)\) | |
| \((-2;2)\) | |
| \((1;+\infty)\) | |
| \((-\infty;1)\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:

Hàm số nghịch biến trên khoảng nào sau đây?
| \((-1;0)\) | |
| \((-1;1)\) | |
| \((-\infty;-1)\) | |
| \((0;+\infty)\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:

Hàm số nghịch biến trên khoảng nào sau đây?
| \((-\infty;2)\) | |
| \((0;2)\) | |
| \((2;+\infty)\) | |
| \((0;+\infty)\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:

Hàm số nghịch biến trên khoảng nào sau đây?
| \((0;+\infty)\) | |
| \((-\infty;0)\) | |
| \((-1;0)\) | |
| \((-\infty;-2)\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ.

Hàm số đã cho nghịch biến trên khoảng nào sau đây?
| \((0;+\infty)\) | |
| \((-1;1)\) | |
| \((-\infty;0)\) | |
| \((-\infty;-2)\) |
Cho hàm số $f(x)$ có bảng xét dấu của đạo hàm như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
| $(-\infty;2)$ | |
| $(-\infty;-1)$ | |
| $(-1;2)$ | |
| $(-1;+\infty)$ |
Cho hàm số $y=f(x)$ có $f'(x)$ liên tục trên $\mathbb{R}$ và đồ thị $f'(x)$ như hình bên.

Hàm số đã cho nghịch biến trên khoảng nào sau đây?
| $(-\infty;0)$ | |
| $(-1;1)$ | |
| $(1;4)$ | |
| $(1;+\infty)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
| $(-\infty;1)$ | |
| $(0;1)$ | |
| $(-1;0)$ | |
| $(-2;+\infty)$ |
Cho hàm số $y=f(x)$ xác thực trên tập số thực $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Đặt $g(x)=f(x)-x$, hàm số $g(x)$ nghịch biến trên khoảng
| $(1;+\infty)$ | |
| $(-1;2)$ | |
| $(2;+\infty)$ | |
| $(-\infty;-1)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
| $(-\infty;2)$ | |
| $(1;+\infty)$ | |
| $(1;3)$ | |
| $(-\infty;1)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
| $(0;2)$ | |
| $(3;+\infty)$ | |
| $(-\infty;1)$ | |
| $(1;3)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên sau:

Hàm số đã cho nghịch biến trên khoảng nào sau đây?
| $(1;3)$ | |
| $(-\infty;-2)$ | |
| $(0;+\infty)$ | |
| $(-2;0)$ |
Cho hàm số $f(x)$ có bảng xét dấu của đạo hàm như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
| $(-\infty;2)$ | |
| $(-\infty;-1)$ | |
| $(1;2)$ | |
| $(-1;+\infty)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
| $(1;+\infty)$ | |
| $(0;1)$ | |
| $(-1;0)$ | |
| $(0;+\infty)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Hàm số $y=f(x)$ nghịch biến trên khoảng nào dưới đây?
| $(-3;1)$ | |
| $(0;+\infty)$ | |
| $(-\infty;-2)$ | |
| $(-2;0)$ |
Cho hàm số $y=f(x)$ có đạo hàm, liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.

Hàm số $g(x)=\big[f(x)\big]^2$ nghịch biến trên khoảng nào sau đây?
| $(-1;1)$ | |
| $\left(0;\dfrac{5}{2}\right)$ | |
| $\left(\dfrac{5}{2};4\right)$ | |
| $(-2;-1)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có đồ thị hàm $f'(x)$ như hình vẽ.

Tìm khoảng nghịch biến của hàm số $g(x)=f\big(x-x^2\big)$.
| $\left(-\dfrac{1}{2};+\infty\right)$ | |
| $\left(-\dfrac{3}{2};+\infty\right)$ | |
| $\left(-\infty;\dfrac{3}{2}\right)$ | |
| $\left(\dfrac{1}{2};+\infty\right)$ |
Cho hàm bậc bốn $y=f(x)$ có đồ thị $f'(x)$ như hình vẽ bên.

Hàm số $y=f(1-3x)-4$ nghịch biến trên khoảng
| $\left(-\dfrac{1}{3};\dfrac{1}{3}\right)$ | |
| $(0;2)$ | |
| $(-\infty;-1)$ | |
| $\left(\dfrac{1}{3};\dfrac{2}{3}\right)$ |