Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

B

Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(f(x)-1=m\) có đúng \(2\) nghiệm.

\(-2< m<-1\)
\(m=-2\) hoặc \(m\geq-1\)
\(m=-1\) hoặc \(m>0\)
\(m=-2\) hoặc \(m>-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(y=f(x)\) xác định trên \(\mathbb{R}\setminus\{0\}\), liên tục trên từng khoảng xác định và có bảng biến thiên như hình.

Tìm tập hợp các giá trị thực của tham số \(m\) để phương trình \(f(x)=m\) có \(3\) nghiệm phân biệt.

\([-2;2)\)
\((-2;2)\)
\((-2;2]\)
\([2;+\infty)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(y=f(x)\) xác định trên \(\mathbb{R}\setminus\{0\}\), liên tục trên từng khoảng xác định và có bảng biến thiên như hình.

Phương trình \(f(x)=m\) với \(m\in(-1;2)\) có bao nhiêu nghiệm?

\(3\)
\(1\)
\(0\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(f(x)-m=0\) có \(3\) nghiệm phân biệt.

\(-3\leq m\leq2\)
\(-3< m<2\)
\(-4\leq m\leq2\)
\(-4< m<2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Tập hợp các giá trị thực của tham số \(m\) để phương trình \(f(x)=m\) có đúng một nghiệm là

\((-\infty;-2)\cup(2;+\infty)\)
\((-\infty;-2]\cup[2;+\infty)\)
\((-2;2)\)
\([-2;2]\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Số nghiệm của phương trình \(f(x)+2=0\) là

\(2\)
\(0\)
\(1\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Đồ thị của \(f(x)\) cắt đường thẳng \(y=2021\) tại bao nhiêu điểm?

\(2\)
\(1\)
\(0\)
\(4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \(M\) và \(N\) là giao điểm của đồ thị hai hàm số \(y=x+1\) và \(y=\dfrac{2x+4}{x-1}\). Tìm hoành độ trung điểm \(I\) của đoạn thẳng \(MN\).

\(x_I=-\dfrac{5}{2}\)
\(x_I=2\)
\(x_I=\dfrac{5}{2}\)
\(x_I=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \(M\) và \(N\) là giao điểm của đồ thị hai hàm số \(y=x^4-2x^2+2\) và \(y=4-x^2\). Tọa độ trung điểm \(I\) của đoạn thẳng \(MN\) là

\((1;0)\)
\((0;2)\)
\((2;0)\)
\((0;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Điểm nào sau đây là điểm chung của parabol \(y=x^2-x+1\) và đường thẳng \(y=2x-1\)?

\(P(3;5)\)
\(N(2;3)\)
\(M(1;-1)\)
\(Q(0;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Số giao điểm của đường cong \(y=x^3-2x^2+2x+1\) và đường thẳng \(y=1-x\) bằng

\(0\)
\(2\)
\(1\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đồ thị của hai hàm số \(y=-x^3+3x^2+2x-1\) và \(y=3x^2-2x-1\) có tất cả bao nhiêu điểm chung?

\(1\)
\(2\)
\(0\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm tọa độ giao điểm \(M\) của đồ thị hàm số \(y=\dfrac{2x-1}{x+2}\) với trục tung.

\(M\left(\dfrac{1}{2};0\right)\)
\(M\left(0;2\right)\)
\(M\left(0;-\dfrac{1}{2}\right)\)
\(M\left(-\dfrac{1}{2};0\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đồ thị hàm số \(y=x^4+3x^2-4\) cắt trục hoành tại bao nhiêu điểm?

\(4\)
\(2\)
\(3\)
\(0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Số giao điểm của đồ thị hàm số \(y=x^4-5x^2+4\) với trục hoành là

\(3\)
\(2\)
\(4\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Số giao điểm của đồ thị hàm số \(y=-2x^3-3x^2+1\) với trục hoành là

\(1\)
\(0\)
\(3\)
\(2\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=x(1-x)\left(x^2+1\right)\) có đồ thị \(\left(\mathscr{C}\right)\). Mệnh đề nào sau đây là đúng?

\(\left(\mathscr{C}\right)\) không cắt trục hoành
\(\left(\mathscr{C}\right)\) cắt trục hoành tại \(3\) điểm
\(\left(\mathscr{C}\right)\) cắt trục hoành tại \(1\) điểm
\(\left(\mathscr{C}\right)\) cắt trục hoành tại \(2\) điểm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=(x-2)\left(x^2-5x+6\right)\) có đồ thị \(\left(\mathscr{C}\right)\). Mệnh đề nào sau đây là đúng?

\(\left(\mathscr{C}\right)\) không cắt trục hoành
\(\left(\mathscr{C}\right)\) cắt trục hoành tại \(3\) điểm
\(\left(\mathscr{C}\right)\) cắt trục hoành tại \(1\) điểm
\(\left(\mathscr{C}\right)\) cắt trục hoành tại \(2\) điểm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.

Hỏi đồ thị hàm số \(y=\left|f\left(|x|\right)\right|\) có tất cả bao nhiêu điểm cực trị?

\(9\)
\(7\)
\(6\)
\(8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(y=f(x)\) có đồ thị hàm số \(y=f\left(|x|\right)\) như hình vẽ.

Hãy chọn kết luận đúng.

\(f(x)=-x^3-x^2+4x+4\)
\(f(x)=x^3+x^2-4x-4\)
\(f(x)=x^3-x^2-4x+4\)
\(f(x)=-x^3+x^2+4x-4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự