Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

C

Cho hình phẳng \((D)\) giới hạn bởi đồ thị hàm số \(y=\sqrt{x}\), hai đường thẳng \(x=1\), \(x=2\) và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay \((D)\) quanh trục hoành.

\(3\pi\)
\(\dfrac{3}{2}\)
\(\dfrac{3\pi}{2}\)
\(\dfrac{2\pi}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình \(D\) giới hạn bởi các đường \(y=x^2-2\) và \(y=-|x|\). Khi đó diện tích của hình \(D\) là

\(\dfrac{13}{3}\)
\(\dfrac{7\pi}{3}\)
\(\dfrac{7}{3}\)
\(\dfrac{13\pi}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính diện tích hình phẳng tạo thành bởi parabol \(y=x^2\), đường thẳng \(y=-x+2\) và trục hoành trên đoạn \([0;2]\) (phần gạch sọc trong hình vẽ).

\(\dfrac{5}{6}\)
\(\dfrac{7}{6}\)
\(\dfrac{2}{3}\)
\(\dfrac{3}{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Diện tích hình phẳng \((H)\) giới hạn bởi đồ thị của hàm số \(y=f(x)\), trục hoành và hai đường thẳng \(x=a\), \(x=b\) (\(a<b\) và \(f(x)\) liên tục trên \([a;b]\)) (phần gạch sọc trong hình vẽ) tính theo công thức

\(S=-\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\)
\(S=\left|\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\right|\)
\(S=\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nếu hàm số \(y=f(x)\) liên tục trên đoạn \([a;b]\) thì diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hàm số \(y=f(x)\), trục hoành và hai đường thẳng \(x=a\), \(x=b\) là

\(\displaystyle\int\limits_{a}^{b}\left|f(x)-g(x)\right|\mathrm{\,d}x\)
\(\displaystyle\int\limits_{b}^{a}\left|f(x)\right|\mathrm{\,d}x\)
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_{a}^{b}\left|f(x)\right|\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Hàm số \(y=f(x)\) liên tục trên \([1;4]\) và thỏa mãn \(f(x)=\dfrac{f\left(2\sqrt{x}-1\right)}{\sqrt{x}}+\dfrac{\ln x}{x}\). Tính tích phân \(I=\displaystyle\int\limits_{3}^{4}f(x)\mathrm{\,d}x\).

\(I=3+2\ln^22\)
\(I=\ln^2\)
\(I=2\ln2\)
\(I=2\ln^22\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?

\(4< f(5)<5\)
\(3< f(5)<4\)
\(1< f(5)<2\)
\(2< f(5)<3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2+1}{x+1}\mathrm{\,d}x=a+b\ln c\), với \(a\in\mathbb{Q}\), \(b\in\mathbb{Z}\), \(c\) là số nguyên tố. Ta có \(2a+b+c\) bằng

\(5\)
\(4\)
\(3\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giả sử tích phân \(I=\displaystyle\int\limits_{1}^{6}\dfrac{1}{2x+1}\mathrm{\,d}x=\ln M\), tìm \(M\).

\(M=13\)
\(M=4,33\)
\(M=\sqrt{\dfrac{13}{3}}\)
\(M=\dfrac{13}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\) liên tục trên \([0;2]\) và \(f(2)=3\), \(\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x=3\). Tính \(\displaystyle\int\limits_{0}^{2}x\cdot f'(x)\mathrm{\,d}x\).

\(6\)
\(3\)
\(0\)
\(-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị của tích phân \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}x\sin x\mathrm{\,d}x\) bằng

\(\dfrac{4+\pi}{4\sqrt{2}}\)
\(\dfrac{4-\pi}{4\sqrt{2}}\)
\(\dfrac{2-\pi}{2\sqrt{2}}\)
\(\dfrac{2+\pi}{2\sqrt{2}}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=\dfrac{1}{2x-1}\) và \(f(1)=1\). Giá trị \(f(5)\) bằng

\(1+\ln2\)
\(1+\ln3\)
\(\ln2\)
\(\ln3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(f(x)\) có đạo hàm \(f'(x)\) liên tục trên \([a;b]\), \(f(b)=5\), \(\displaystyle\int\limits_{a}^{b}f'(x)\mathrm{\,d}x=3\sqrt{5}\). Tính \(f(a)\).

\(f(a)=3\sqrt{5}\)
\(f(a)=\sqrt{5}\left(\sqrt{5}-3\right)\)
\(f(a)=\sqrt{3}\left(\sqrt{5}-3\right)\)
\(f(a)=\sqrt{5}\left(3-\sqrt{5}\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(f(x),\,g(x)\) liên tục trên \([a;b]\). Khẳng định nào sau đây sai?

\(\displaystyle\int\limits_{a}^{b}\left[f(x)+g(x)\right]\mathrm{\,d}x=\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{a}^{b}g(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{b}^{a}f(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{a}^{b}f(t)\mathrm{\,d}t\)
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(F(x)\) là một nguyên hàm của hàm số \(f(x)\). Khi đó hiệu số \(F(0)-F(1)\) bằng

\(\displaystyle\int\limits_{0}^{1}-F(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_{0}^{1}F(x)\mathrm{\,d}x\)
\(-\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(f(x)\) liên tục trên \(\mathbb{K}\) và \(a,\,b\in\mathbb{K}\), \(F(x)\) là một nguyên hàm của \(f(x)\) trên \(\mathbb{K}\). Chọn khẳng định sai trong các khẳng định sau.

\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=F(a)-F(b)\)
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{a}^{b}f(t)\mathrm{\,d}t\)
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=F(x)\bigg|_a^b\)
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\left(\displaystyle\int f(x)\mathrm{\,d}x\right)\bigg|_a^b\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Xét nguyên hàm \(I=\displaystyle\int x\sqrt{x+2}\mathrm{\,d}x\). Nếu đặt \(t=\sqrt{x+2}\) thì ta được

\(I=\displaystyle\int\left(4t^4-2t^2\right)\mathrm{\,d}t\)
\(I=\displaystyle\int\left(t^4-2t^2\right)\mathrm{\,d}t\)
\(I=\displaystyle\int\left(2t^4-4t^2\right)\mathrm{\,d}t\)
\(I=\displaystyle\int\left(2t^4-t^2\right)\mathrm{\,d}t\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Họ nguyên hàm của hàm số \(f(x)=\sin3x\) là

\(\dfrac{1}{3}\cos3x+C\)
\(-\dfrac{1}{3}\cos3x+C\)
\(-3\cos3x+C\)
\(3\cos3x+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong các mệnh đề sau, mệnh đề nào sai?

\(\displaystyle\int3x^2\mathrm{\,d}x=x^3+C\)
\(\displaystyle\int\mathrm{e}^{2x}\mathrm{\,d}x=\dfrac{1}{2}\mathrm{e}^{2x}+C\)
\(\displaystyle\int\dfrac{1}{2x}\mathrm{\,d}x=\dfrac{\ln|x|}{2}+C\)
\(\displaystyle\int\sin2x\mathrm{\,d}x=2\cos2x+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \((P)\colon4x-3y+z-13=0\) và điểm \(M(5;-5;4)\). Tìm tọa độ điểm \(M'\) đối xứng với \(M\) qua mặt phẳng \((P)\).

\(M'(7;-9;10)\)
\(M'(1;-2;3)\)
\(M'(5;-5;4)\)
\(M'(-3;1;2)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự