Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật tâm $O$. Biết $AB=2a$, $BC=3a$, hai tam giác $SAB$ và $SCD$ đều. Điểm $M$ thuộc cạnh $SA$ và $SM=x$ $\left(0< x<2a \right)$. Mặt phẳng $\left(MBC\right)$ cắt $SD$ tại $N$.
a) Chứng minh tứ giác $BMNC$ là hình thang cân.
b) Tính diện tích tứ giác $BMNC$ theo $a$ và $x$.
Cho $x,y,z$ là các số thực dương thỏa mãn $x+y+z=xyz$. Chứng minh rằng:
Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $a$, góc giữa cạnh bên và mặt phẳng đáy bằng $60^\circ$. Tính độ dài đường cao của hình chóp đã cho.
Cho hàm số $f\left(x\right)=x^3+ax^2+bx+c$ với $a,\,b,\,c\in\mathbb{R}$. Hãy xác định các số $a,\,b,\,c$ biết rằng $f'\left(\dfrac{1}{3}\right)=0$ và đồ thị của hàm số $y=f\left(x\right)$ đi qua các điểm $\left(-1;-3\right)$ và $\left(1;-1\right)$.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật, $SA\bot (ABCD)$, $AB=a$ và $SB=\sqrt{2}a$. Khoảng cách từ điểm $S$ đến mặt phẳng $(ABCD)$ bằng
| $a$ | |
| $\sqrt{2}a$ | |
| $2a$ | |
| $\sqrt{3}a$ |
Cho hình chóp $S.ABCD$ có $SA$ vuông góc với mặt phẳng đáy. Mặt phẳng $\left(ABCD\right)$ vuông góc với mặt phẳng nào dưới đây?
| $(SAC)$ | |
| $(SBD)$ | |
| $(SCD)$ | |
| $(SBC)$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, $SA\bot (ABCD)$ và $SA=a$. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABCD)$ bằng
| $45^\circ$ | |
| $90^\circ$ | |
| $30^\circ$ | |
| $60^\circ$ |
Cho hình chóp $S.ABCD$ có $ABCD$ là hình chữ nhật và $SA\bot (ABCD)$. Mệnh đề nào dưới đây đúng?
| $AB\bot(SAD)$ | |
| $BC\bot(SAD)$ | |
| $AC\bot(SAD)$ | |
| $BD\bot(SAD)$ |
Trong không gian cho hai vectơ $\overrightarrow{u}$, $\overrightarrow{v}$ tạo với nhau một góc $60^\circ$, $\left|\overrightarrow{u}\right|=2$ và $\left|\overrightarrow{v}\right|=3$. Tích vô hướng $\overrightarrow{u}\cdot\overrightarrow{v}$ bằng
| $3$ | |
| $6$ | |
| $2$ | |
| $3\sqrt{3}$ |
Cho hàm số $f\left(x\right)=\left(x+1\right)^3$. Giá trị của $f''\left(1\right)$ bằng
| $12$ | |
| $6$ | |
| $24$ | |
| $4$ |
Đạo hàm cấp hai của hàm số $y=x^3+2x$ là
| $6x$ | |
| $6x+2$ | |
| $3x$ | |
| $3x+2$ |
Đạo hàm của hàm số $y=\sin2x$ là
| $2\cos2x$ | |
| $-2\cos2x$ | |
| $\cos2x$ | |
| $-\cos2x$ |
Đạo hàm của hàm số $y=x\sin x$ là
| $\sin x+x\cos x$ | |
| $\sin x-x\cos x$ | |
| $\sin x+\cos x$ | |
| $\cos x+x\sin x$ |
Đạo hàm của hàm số $y=\tan\left(2x+1\right)$ là
| $\dfrac{2}{\cos^2\left(2x+1\right)}$ | |
| $-\dfrac{2}{\cos^2\left(2x+1\right)}$ | |
| $\dfrac{1}{\cos^2\left(2x+1\right)}$ | |
| $\dfrac{2}{\sin^2\left(2x+1\right)}$ |
Đạo hàm của hàm số $y=3x^2+\sqrt{x}$ là
| $6x+\dfrac{1}{2\sqrt{x}}$ | |
| $6x-\dfrac{1}{2\sqrt{x}}$ | |
| $3x+\dfrac{1}{2\sqrt{x}}$ | |
| $6x+\dfrac{1}{\sqrt{x}}$ |
Đạo hàm của hàm số $y=\left(2x+1\right)^2$ là
| $y'=8x+4$ | |
| $y'=2x+1$ | |
| $y'=4x+2$ | |
| $y'=4x+1$ |