Ngân hàng bài tập

Toán học

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là tứ giác lồi. Tìm giao tuyến của các cặp mặt phẳng sau đây

  1. $(SAC)$ và $(SBD)$.
  2. $(SAB)$ và $(SCD)$.
  3. $(SAD)$ và $(SBC)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp $S.ABC$. Trên cạnh $SA$, $SC$ lấy $M$, $N$ sao cho $MN$ không song $AC$. Gọi $K$ là trung điểm $BC$. Tìm giao tuyến của các cặp mặt phẳng.

  1. $(MNK)$ và $(ABC)$.
  2. $(MNK)$ và $(SAB)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho tứ diện $SABC$. Gọi $K$, $M$ lần lượt là hai điểm trên cạnh $SA$ và $SC$ sao cho $KM$ không song song $AC$. Gọi $N$ là trung điểm của cạnh $BC$. Tìm giao tuyến của

  1. $(SAN)$ và $(ABM)$.
  2. $(SAN)$ và $(BCK)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho tứ diện $SABC$. Goi $M, N$ lần lượt là hai điểm trên cạnh $AB$ và $BC$ sao cho $MN$ không song song với $AC$. Tìm giao tuyến của các cặp mặt phẳng sau:

  1. $(SMN)$ và $(SAC)$
  2. $(SAN)$ và $(SCM)$.
  3. $(SMC)$ và $(ADN)$. Với $D$ là trung điểm của $SB$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Xét khai triển của \(\left(x+\dfrac{1}{x}\right)^{10}\).

  1. Viết số hạng thứ \(7\) của khai triển.
  2. Tìm số hạng không chứa \(x\) trong khai triển.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tìm số hạng chứa \(x^{51}\) trong khai triển $$\left(x+\dfrac{1}{x^2}\right)^{2019}$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tìm hệ số của \(x^{25}y^{10}\) trong khai triển $$\left(x^3+xy\right)^{15}$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tính tổng các hệ số trong khai triển $$\left(3x-4\right)^{17}$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tính tổng $$S=\mathrm{C}_{2n}^0+\mathrm{C}_{2n}^1+\mathrm{C}_{2n}^2+\cdots+\mathrm{C}_{2n}^{2n}$$

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tính \(S=\mathrm{C}_{2019}^1+\mathrm{C}_{2019}^3+\cdots+\mathrm{C}_{2019}^{2019}\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tiếp tuyến của đồ thị hàm số \(y=\dfrac{x-2}{2x+1}\) vuông góc với đường thẳng \(y=-\dfrac{1}{5}x\) là

\(y=5x+3\) và \(y=5x-2\)
\(y=5x-8\) và \(y=5x-2\)
\(y=5x+8\) và \(y=5x-2\)
\(y=5x+8\) và \(y=5x+2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tiếp tuyến của đồ thị hàm số \(y=x^3-3x+2\) vuông góc với \(d\colon y=-\dfrac 19x+2\) là

\(y=-\dfrac 19x+18,\,y=-\dfrac 19x+5\)
\(y=\dfrac 19x+18,\,y=\dfrac 19x-14\)
\(y=9x+18,\,y=9x-14\)
\(y=9x+18,\,y=9x+5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tất cả các phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x+1}{x-1}\) song song với đường thẳng \(y=-3x+15\).

\(y=-3x+1\), \(y=-3x-7\)
\(y=-3x-1\), \(y=-3x+11\)
\(y=-3x-1\)
\(y=-3x+11\), \(y=-3x+5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số \(y=x^3-6x^2+9x\) có đồ thị \(\left(\mathscr{C}\right)\). Tiếp tuyến của \(\left(\mathscr{C}\right)\) song song với đường thẳng \(d\colon y=9x\) có phương trình là

\(y=9x+40\)
\(y=9x-40\)
\(y=9x+32\)
\(y=9x-32\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Viết phương trình tiếp tuyến của đồ thị \(y=\dfrac{x-1}{x+1}\), biết tiếp tuyến có hệ số góc là \(\dfrac{1}{2}\).

\(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\)
\(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\)
\(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\)
\(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Viết phương trình tiếp tuyến của đồ thị hàm số \(y=x^3-3x^2\), biết tiếp tuyến có hệ số góc bằng \(-3\).

\(y=-3x-2\)
\(y=-3\)
\(y=-3x-5\)
\(y=-3x+1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Phương trình tiếp tuyến với đồ thị hàm số \(y=\dfrac{2x-4}{x-4}\) tại điểm có tung độ bằng \(3\) là

\(x+4y-20=0\)
\(x+4y-5=0\)
\(4x+y-2=0\)
\(4x+y-5=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Phương trình tiếp tuyến của đồ thị hàm số \(y=x^4-3x^2+1\) tại các điểm có tung độ bằng \(5\) là

\(y=20x-35\)
\(y=-20x-35\) và \(y=20x+35\)
\(y=20x-35\) và \(y=-20x-35\)
\(y=-20x+35\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Phương trình tiếp tuyến của đồ thị hàm số \(y=x^3-x^2+x+1\) tại điểm có tung độ bằng \(2\) là

\(y=2x\)
\(y=9x-11\)
\(y=54x+32\)
\(y=2x+4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tiếp tuyến của đồ thị hàm số \(y=\dfrac{4}{x-1}\) tại điểm có hoành độ \(x_0=-1\) là

\(y=-x-3\)
\(y=x-1\)
\(y=-x+2\)
\(y=-x-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự