Ngân hàng bài tập

Toán học: Hàm số

B

Nếu $\displaystyle\displaystyle\int\limits_0^2f(x)\mathrm{\,d}x=5$ thì $\displaystyle\displaystyle\int\limits_0^2[2f(x)-1]\mathrm{\,d}x$ bằng

$8$
$9$
$10$
$13$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trên đoạn $[0;3]$, hàm số $y=-x^3+3x$ đạt giá trị lớn nhất tại điểm

$x=0$
$x=3$
$x=1$
$x=2$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Biết hàm số $y=\dfrac{x+a}{x+1}$ ($a$ là số thực cho trước, $a\ne1$) có đồ thị như trong hình bên.

Mệnh đề nào dưới đây đúng?

$y'< 0,\,\forall x\ne-1$
$y'>0,\,\forall x\ne-1$
$y'< 0,\,\forall x\in\mathbb{R}$
$y'>0,\,\forall x\in\mathbb{R}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $f(x)=\mathrm{e}^x+2$. Khẳng định nào dưới đây đúng?

$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^{x-2}+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+2x+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x-2x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tiệm cận đứng của đồ thị hàm số $y=\dfrac{2x-1}{x-1}$ là đường thẳng có phương trình

$x=1$
$x=-1$
$x=2$
$x=\dfrac{1}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tập xác định của hàm số $y=9^x$

$\mathbb{R}$
$[0;+\infty)$
$\mathbb{R}\setminus\{0\}$
$(0;+\infty)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Nếu $\displaystyle\displaystyle\int\limits_0^2f(x)\mathrm{\,d}x=4$ thì $\displaystyle\displaystyle\int\limits_0^23f(x)\mathrm{\,d}x$ bằng

$36$
$12$
$3$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có đồ thị là đường cong trong hình bên.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

$(0;1)$
$(-\infty;0)$
$(0;+\infty)$
$(-1;1)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Giá trị cực tiểu của hàm số đã cho bằng

$-1$
$5$
$-3$
$1$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $y=x^2+4$. Khẳng định nào dưới đây đúng?

$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=2x+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x^2+4x+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{x^3}{3}+4x+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x^3+4x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự

Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y=x^{\tfrac{5}{2}}$ là

$y'=\dfrac{2}{7}x^{\tfrac{7}{2}}$
$y'=\dfrac{2}{5}x^{\tfrac{3}{2}}$
$y'=\dfrac{5}{2}x^{\tfrac{3}{2}}$
$y'=\dfrac{5}{2}x^{-\tfrac{3}{2}}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Đồ thị của hàm số $y=-x^4+4x^2-3$ cắt trục tung tại điểm có tung độ bằng

$0$
$3$
$1$
$-3$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên

$y=-2x^4+4x^2-1$
$y=-x^2+3x-1$
$y=2x^4-4x^2-1$
$y=x^3-3x-1$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng xét dấu của đạo hàm như sau:

Số điểm cực trị của hàm số đã cho là

$5$
$3$
$2$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Nếu $\displaystyle\displaystyle\int\limits_1^4f(x)\mathrm{\,d}x=3$ và $\displaystyle\displaystyle\int\limits_1^4g(x)\mathrm{\,d}x=-2$ thì $\displaystyle\displaystyle\int\limits_1^4[f(x)-g(x)]\mathrm{\,d}x$ bằng

$-1$
$-5$
$5$
$1$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $y=f\left(x\right)$ là đa thức bậc ba có đồ thị như hình bên.

Số nghiệm thuộc khoảng $\left(0;3\pi\right)$ của phương trình $f\left(\cos{x}+1\right)=\cos{x}+1$ là

$5$
$4$
$6$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f\left(x\right)=\log_2^3x-\log_2x^3+m$ ($m$ là tham số thực). Gọi $S$ là tập hợp tất cả các giá trị của $m$ sao cho $\max\limits_{\left[1;4\right]}\left|f\left(x\right)\right|+\min\limits_{\left[1;4\right]}\left|f\left(x\right)\right|=6$. Tổng bình phương các phần tử của $S$ bằng

$13$
$18$
$5$
$8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f\left(x\right)$ thỏa mãn $f\left(2\right)=25$ và $f'\left(x\right)=4x\sqrt{f\left(x\right)}$ với mọi $x\in\mathbb{R}$. Khi đó $\displaystyle\displaystyle\int\limits_2^3f\left(x\right)\mathrm{\,d}x$ bằng

$\dfrac{1073}{15}$
$\dfrac{458}{15}$
$\dfrac{838}{15}$
$\dfrac{1016}{15}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\dfrac{ax-1}{bx+c}\,(a,\,b,\,c\in\mathbb{R})$ có bảng biến thiên như hình bên.

Giá trị của $a-b-c$ thuộc khoảnh nào sau đây?

$\left(-1;0\right)$
$\left(-2;-1\right)$
$\left(1;2\right)$
$\left(0;1\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Có bao nhiêu giá trị nguyên của tham số $m$ sao cho hàm số $y=\dfrac{mx+9}{x+m}$ nghịch biến trên khoảng $\left(0;2\right)$.

$7$
$4$
$5$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự