Ngân hàng bài tập

Toán học: Hàm số

C

Tập xác định của hàm số $y=\log_3(x-4)$ là

$(5;+\infty)$
$(-\infty;+\infty)$
$(4;+\infty)$
$(-\infty;4)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)=ax^4+bx^2+c$ có đồ thị là đường cong trong hình bên.

Số nghiệm thực của phương trình $f(x)=1$ là

$1$
$2$
$4$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Hàm số nào dưới đây có bảng biến thiên như hình vẽ?

$y=x^4-2x^2$
$y=-x^3+3x$
$y=-x^4+2x^2$
$y=x^3-3x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tiệm cận ngang của đồ thị hàm số $y=\dfrac{2x-1}{2x+4}$ là đường thẳng có phương trình

$x=-2$
$x=1$
$y=1$
$y=-2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

$(1;+\infty)$
$(0;1)$
$(-1;0)$
$(0;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=-\cos x+C$. Khẳng định nào dưới đây đúng?

$f(x)=-\sin x$
$f(x)=-\cos x$
$f(x)=\sin x$
$f(x)=\cos x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nếu $\displaystyle\displaystyle\int\limits_{-1}^{5}f(x)\mathrm{\,d}x=-3$ thì $\displaystyle\displaystyle\int\limits_{5}^{-1}f(x)\mathrm{\,d}x$ bằng

$5$
$6$
$4$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Nếu $\displaystyle\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x=4$ thì $\displaystyle\displaystyle\int\limits_{0}^{2}\left[\dfrac{1}{2}f(x)+2\right]\mathrm{\,d}x$ bằng

$6$
$8$
$4$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm các điểm cực trị hàm số $f(x)=x^3-3x+1$.

2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm tất cả các giá trị thực của tham số $m$ để hàm số $y=\log_2\left(x^2-2x+m\right)$ có tập xác định là $\mathbb{R}$.

$m\geq1$
$m\leq1$
$m>1$
$m< -1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án $A,\,B,\,C,\,D$ dưới đây.

Hỏi hàm số đó là hàm số nào?

$y=\log_2x$
$y=\log_{\sqrt{2}}x$
$y=\log_22x$
$y=\log_{\tfrac{1}{2}}x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị của $m$ để đồ thị của hàm số $y=\dfrac{x}{1-x}$ cắt đường thẳng $y=x-m$ tại hai điểm phân biệt $A,\,B$ sao cho góc giữa hai đường thẳng $OA$ và $OB$ bằng $60^\circ$ ($O$ là gốc tọa độ)?

$2$
$1$
$3$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}\setminus\{-1\}$, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình bên.

Tìm tập hợp tất cả các giá trị thực của tham số $m$ sao cho phương trình $f(x)=m$ có đúng ba nghiệm thực phân biệt.

$(-4;2)$
$[-4;2)$
$(-4;2]$
$(-\infty;2]$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=ax^4+bx^2+c$ có đồ thị như hình vẽ bên.

Mệnh đề nào dưới đây đúng?

$a>0,\,b< 0,\,c< 0$
$a< 0,\,b< 0,\,c< 0$
$a< 0,\,b>0,\,c< 0$
$a>0,\,b< 0,\,c>0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đường cong trong hình vẽ bên là đồ thị hàm số nào dưới đây?

$y=\dfrac{x+2}{-2x+4}$
$y=\dfrac{-x+1}{x-2}$
$y=\dfrac{2x-3}{x+2}$
$y=\dfrac{-x+3}{2x-4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đường cong trong hình vẽ bên là đồ thị của hàm số nào sau đây?

$y=-x^3+3x+2$
$y=x^3-2x+2$
$y=x^3-3x+2$
$y=x^3+3x+2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=\dfrac{x+b}{cx-1}$ có đồ thị như hình bên.

Mệnh đề nào dưới đây là đúng?

$b< 0,\,c< 0$
$b< 0,\,c>0$
$b>0,\,c>0$
$b>0,\,c< 0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=\dfrac{x}{x-1}+2$ có đồ thị $\left(\mathscr{C}\right)$ Mệnh đề nào dưới đây đúng?

Đồ thị $\left(\mathscr{C}\right)$ có tiệm cận ngang $y=1$
Đồ thị $\left(\mathscr{C}\right)$ có tiệm cận ngang $y=3$
Đồ thị $\left(\mathscr{C}\right)$ không có tiệm cận
Đồ thị $\left(\mathscr{C}\right)$ có tiệm cận đứng $x=2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)=\left|x^4-4x^3+4x^2+a\right|$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn $[0;2]$. Có bao nhiêu số nguyên $a$ thuộc đoạn $[-3;2]$ sao cho $M\leq2m$?

$7$
$5$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giá trị nhỏ nhất của hàm số $y=\dfrac{2\sin x+3}{\sin x+1}$ trên $\left[0;\dfrac{\pi}{2}\right]$ là

$5$
$2$
$3$
$\dfrac{5}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự