Cho các số dương \(a,\,b,\,c\) thỏa mãn \(abc=8\). Tìm giá trị nhỏ nhất của biểu thức $$P=(a+b)(b+c)(c+a).$$
| \(16\sqrt{2}\) | |
| \(64\) | |
| \(16\) | |
| \(8\) |
Giá trị nhỏ nhất của hàm số \(f(x)=x+\dfrac{1}{16x}\) trên \((0;+\infty)\) là
| \(\dfrac{1}{2}\) | |
| \(\dfrac{1}{16}\) | |
| \(2\) | |
| \(16\) |
Cho hàm số \(y=x^4+8x^2+m\) có giá trị nhỏ nhất trên \([1;3]\) bằng \(6\). Tham số thực \(m\) bằng
| \(-42\) | |
| \(6\) | |
| \(15\) | |
| \(-3\) |
Cho hàm số \(y=\dfrac{x-m}{x+1}\) thỏa \(\min\limits_{[0;1]}y+\max\limits_{[0;1]}y=5\). Tham số thực \(m\) thuộc tập nào dưới đây?
| \([2;4)\) | |
| \((-\infty;2)\) | |
| \([4;6)\) | |
| \([6;+\infty)\) |
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\dfrac{1-x}{x+1}\) trên \([-3;-2]\) lần lượt bằng
| \(2\) và \(-3\) | |
| \(-3\) và \(2\) | |
| \(3\) và \(-2\) | |
| \(-2\) và \(-3\) |
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị lớn nhất của hàm số \(f(x)=\left|x^3-3x+m\right|\) trên đoạn \(\left[0;3\right]\) bằng \(16\). Tổng tất cả các phần tử của \(S\) bằng
| \(-16\) | |
| \(16\) | |
| \(-12\) | |
| \(-2\) |
Giá trị lớn nhất của hàm số \(f\left(x\right)=-x^4+12x^2+1\) trên đoạn \(\left[-1;2\right]\) bằng
| \(1\) | |
| \(37\) | |
| \(33\) | |
| \(12\) |
Tìm giá trị lớn nhất \(M\) của hàm số \(f(x)=(6x+3)(5-2x)\) trên đoạn \(\left[-\dfrac{1}{2};\dfrac{3}{2}\right]\).
| \(M=0\) | |
| \(M=24\) | |
| \(M=27\) | |
| \(M=30\) |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+32}{4(x-2)}\) trên khoảng \((2;+\infty)\).
| \(m=\dfrac{1}{2}\) | |
| \(m=\dfrac{7}{2}\) | |
| \(m=4\) | |
| \(m=8\) |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{4}{x}+\dfrac{x}{1-x}\) trên khoảng \((0;1)\).
| \(m=2\) | |
| \(m=4\) | |
| \(m=6\) | |
| \(m=8\) |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{(x+2)(x+8)}{x}\) trên khoảng \((0;+\infty)\).
| \(m=4\) | |
| \(m=18\) | |
| \(m=16\) | |
| \(m=6\) |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+2x+2}{x+1}\) trên khoảng \((-1;+\infty)\).
| \(m=0\) | |
| \(m=1\) | |
| \(m=2\) | |
| \(m=\sqrt{2}\) |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=x+\dfrac{2}{x-1}\) trên khoảng \((1;+\infty)\).
| \(m=1-2\sqrt{2}\) | |
| \(m=1+2\sqrt{2}\) | |
| \(m=1-\sqrt{2}\) | |
| \(m=1+\sqrt{2}\) |
Cho dãy số \(\left(u_n\right)\), biết \(1\leq u_n\leq2023\), \(\forall n\in\Bbb{N}^*\). Khẳng định nào sau đây là đúng?
| Giá trị lớn nhất của \(\left(u_n\right)\) là \(1\) | |
| Giá trị nhỏ nhất của \(\left(u_n\right)\) là \(2023\) | |
| Giá trị lớn nhất của \(\left(u_n\right)\) là \(2023\) | |
| \(\left(u_n\right)\) không bị chặn |
Giá trị lớn nhất của hàm số \(f(x)=\sqrt{(2x+3)(5-2x)}\) trên đoạn \(\left[-\dfrac{3}{2};\dfrac{5}{2}\right]\) là
| \(2\) | |
| \(4\) | |
| \(8\) | |
| \(2\sqrt{2}\) |
Giá trị nhỏ nhất của hàm số \(f(x)=x+\dfrac{1}{x-2}\) trên khoảng \((2;+\infty)\) là
| \(2\) | |
| \(3\) | |
| \(4\) | |
| \(2\sqrt{2}\) |
Giá trị nhỏ nhất của hàm số \(f(x)=x+\dfrac{8}{x}\) trên khoảng \((0;+\infty)\) là
| \(2\) | |
| \(4\sqrt{2}\) | |
| \(6\) | |
| \(\sqrt{2}\) |
Cho hai số \(x,\,y\) sao cho \(xy=3\). Giá trị nhỏ nhất của \(A=x^2+y^2\) là
| \(2\) | |
| \(3\) | |
| \(4\) | |
| \(6\) |
Giá trị lớn nhất của hàm số \(f(x)=\dfrac{2}{x^2-5x+9}\) bằng
| \(\dfrac{11}{8}\) | |
| \(\dfrac{11}{4}\) | |
| \(\dfrac{4}{11}\) | |
| \(\dfrac{8}{11}\) |
Cho ba số \(x,\,y,\,z>0\). Tìm giá trị nhỏ nhất của biểu thức $$S=\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}$$
| \(0\) | |
| \(2\) | |
| \(4\) | |
| \(6\) |