Ngân hàng bài tập

Toán học: GTLN và GTNN

SSS

Xét tất cả các số thực $x,\,y$ sao cho $a^{4x-\log_5a^2}\leq25^{40-y^2}$ với mọi số thực dương $a$. Giá trị lớn nhất của biểu thức $P=x^2+y^2+x-3y$ bằng

$\dfrac{125}{2}$
$80$
$60$
$20$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $f(x)=(m-1)x^4-2mx^2+1$ với $m$ là tham số thực. Nếu $\min\limits_{[0;3]}f(x)=f(2)$ thì $\max\limits_{[0;3]}f(x)$ bằng

$-\dfrac{13}{3}$
$4$
$-\dfrac{14}{3}$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị lớn nhất của hàm số $f(x)=x^3-3x^2-9x+10$ trên đoạn $[-2;2]$ bằng

$-12$
$10$
$15$
$-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)=\left|x^4-4x^3+4x^2+a\right|$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn $[0;2]$. Có bao nhiêu số nguyên $a$ thuộc đoạn $[-3;2]$ sao cho $M\leq2m$?

$7$
$5$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giá trị nhỏ nhất của hàm số $y=\dfrac{2\sin x+3}{\sin x+1}$ trên $\left[0;\dfrac{\pi}{2}\right]$ là

$5$
$2$
$3$
$\dfrac{5}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm giá trị nhỏ nhất $m$ của hàm số $y=x^4-x^2+13$ trên đoạn $[-2;3]$.

$m=13$
$m=\dfrac{51}{4}$
$m=\dfrac{49}{4}$
$m=\dfrac{205}{16}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Giá trị lớn nhất của hàm số $y=f(x)$ trên đoạn $[-1;1]$ bằng

$1$
$3$
$-1$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $M$ và $m$ lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số $y=2\cos2x+3$. Tính tổng $M+m$.

$8$
$6$
$7$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi $M,\,m$ lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=3+2\cos^2\left(x+\dfrac{\pi}{3}\right)$. Khi đó $m^2+M^2$ có giá trị là

$10$
$34$
$8$
$26$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập giá trị của hàm số $y=\cos x$ là

$(-1;1)$
$[-1;1]$
$\mathbb{R}$
$[0;1]$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Giá trị lớn nhất $M$, giá trị nhỏ nhất $m$ của hàm số $y=\sin^2x+2\sin x+5$ là

$M=8;\,m=5$
$M=5;\,m=2$
$M=8;\,m=4$
$M=8;\,m=2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm giá trị nhỏ nhất của hàm số $y=2\cos\left(3x-\dfrac{\pi}{5}\right)+3$.

$-5$
$1$
$3$
$-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giá trị lớn nhất $y=2\sin2x+3$ là

$5$
$3$
$7$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho $x,\,y$ là các số thực thỏa mãn $(x-3)^2+(y-1)^2=5$. Giá trị nhỏ nhất của biểu thức $P=\dfrac{3y^2+4xy+7x+4y-1}{x+2y+1}$ là

$2\sqrt{3}$
$\dfrac{114}{11}$
$\sqrt{3}$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho $x,\,y$ là hai số thực bất kì thuộc đoạn $[1;3]$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $S=\dfrac{x}{y}+\dfrac{y}{x}$. Tính $M+m$.

$M+m=\dfrac{10}{3}$
$M+m=\dfrac{16}{3}$
$M+m=3$
$M+m=5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hai số thực $x,\,y$ thay đổi thỏa mãn điều kiện $x^2+y^2=2$. Gọi $M$, $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=2\big(x^3+y^3\big)-3xy$. Giá trị của $M+m$ bằng

$-4$
$-\dfrac{1}{2}$
$-6$
$1-4\sqrt{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.

Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng

$2f(0)-1$
$2f(-1)-4$
$2f(1)$
$2f(2)-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.

Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng

$f(2)+\dfrac{2}{3}$
$f(-1)+\dfrac{2}{3}$
$\dfrac{2}{3}$
$f(1)-\dfrac{2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đồ thị $f'(x)$ như hình vẽ.

Trên đoạn $[-4;3]$, hàm số $g(x)=2f(x)+(1-x)^2$ đạt giá trị nhỏ nhất tại điểm

$x_0=-4$
$x_0=-1$
$x_0=3$
$x_0=-3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$. Đồ thị của hàm số $y=f'(x)$ như hình vẽ.

Đặt $h(x)=f(x)-x$. Mệnh đề nào dưới đây đúng?

$\min\limits_{[-2;2]}h(x)=h(-2)$
$\max\limits_{[0;4]}h(x)=h(0)$
$\min\limits_{[-1;2]}h(x)=h(-1)$
$h(2)< h(4)< h(0)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự