Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=x^2-2x,\;\forall x\in\mathbb{R}\). Hàm số \(y=-2f(x)\) đồng biến trên khoảng
| \((0;2)\) | |
| \((2;+\infty)\) | |
| \((-\infty;-2)\) | |
| \((-2;0)\) |
Cho hàm số \(y=\dfrac{mx+2}{2x+m}\) với \(m\) là tham số thực. Gọi \(S\) là tập hợp tất cả các giá trị nguyên của \(m\) để hàm số nghịch biến trên khoảng \((0;1)\). Tìm số phần tử của \(S\).
| \(1\) | |
| \(5\) | |
| \(2\) | |
| \(3\) |
Gọi \(S\) là tập hợp các số nguyên \(m\) để hàm số $$y=\dfrac{x+2m-3}{x-3m+2}$$đồng biến trên khoảng \((-\infty;-14)\). Tính tổng \(T\) của các phần tử trong \(S\).
| \(T=-10\) | |
| \(T=-9\) | |
| \(T=-6\) | |
| \(T=-5\) |
Cho hàm số $$y=2x^3-3(3m+1)x^2+6\left(2m^2+m\right)x-12m^2+3m+1.$$Tính tổng tất cả giá trị nguyên dương của tham số \(m\) để hàm số nghịch biến trên khoảng \((1;3)\).
| \(0\) | |
| \(3\) | |
| \(1\) | |
| \(2\) |
Hàm số \(y=ax^3+bx^2+cx+d\) đồng biến trên \(\mathbb{R}\) khi
| \(\left[\begin{array}{l}a=b,\;c>0\\ b^2-3ac\leq0\end{array}\right.\) | |
| \(\left[\begin{array}{l}a=b=c=0\\ a>0,\;b^2-3ac<0\end{array}\right.\) | |
| \(\left[\begin{array}{l}a=b=0,\;c>0\\ a>0,\;b^2-3ac\leq0\end{array}\right.\) | |
| \(\left[\begin{array}{l}a=b=0,\;c>0\\ a>0,\;b^2-3ac\geq0\end{array}\right.\) |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên mỗi khoảng xác định của nó.
| \(m<-3\) | |
| \(m\leq-3\) | |
| \(m\leq1\) | |
| \(m<1\) |
Số giá trị nguyên của \(m\) để hàm số $$y=\dfrac{mx-2}{-2x+m}$$nghịch biến trên khoảng \(\left(\dfrac{1}{2};+\infty\right)\) là
| \(4\) | |
| \(5\) | |
| \(3\) | |
| \(2\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=\dfrac{mx+1}{x+m}$$đồng biến trên khoảng \((2;+\infty)\).
| \(-2\leq m<-1\) hoặc \(m>1\) | |
| \(m\leq-1\) hoặc \(m>1\) | |
| \(-1< m<1\) | |
| \(m<-1\) hoặc \(m\geq1\) |
Tìm điều kiện của tham số \(m\) để hàm số $$y=\dfrac{x^3}{3}-mx^2+(2m+15)x+7$$luôn đồng biến trên \(\mathbb{R}\).
| \(-3\leq m\leq5\) | |
| \(m\leq-3\) hoặc \(m\geq5\) | |
| \(-3< m<5\) | |
| \(m<-3\) hoặc \(m>5\) |
Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-(m+1)x^2+(4m-8)x+2$$nghịch biến trên \(\mathbb{R}\).
| \(9\) | |
| \(7\) | |
| Vô số | |
| \(8\) |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên các khoảng xác định của nó.
| \(m\leq1\) | |
| \(m<1\) | |
| \(m<-3\) | |
| \(m\leq-3\) |
Tìm tập hợp các giá trị của tham số \(m\) để hàm số $$y=\dfrac{x^3}{3}+x^2+(m-1)x+2019$$đồng biến trên \(\mathbb{R}\).
| \([1;+\infty)\) | |
| \([1;2]\) | |
| \((-\infty;2]\) | |
| \([2;+\infty)\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=(m-1)x^3+(m-1)x^2-(2m+1)x+5$$nghịch biến trên tập xác định.
| \(-\dfrac{5}{4}\leq m\leq1\) | |
| \(-\dfrac{2}{7}\leq m<1\) | |
| \(-\dfrac{7}{2}\leq m<1\) | |
| \(-\dfrac{2}{7}\leq m\leq1\) |
Tìm tất cả các giá trị thực của tham số \(m\) sao cho hàm số $$y=x^4-2(m-1)x^2+m-2$$đồng biến trên khoảng \((1;3)\).
| \(m\in(-\infty;-5)\) | |
| \(m\in[-5;2)\) | |
| \(m\in(2;+\infty)\) | |
| \(m\in(-\infty;2]\) |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x^3}{3}-2mx^2+4x-5$$đồng biến trên \(\mathbb{R}\).
| \(0< m<1\) | |
| \(-1\leq m\leq1\) | |
| \(0\leq m\leq1\) | |
| \(-1< m<1\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-mx^2+(2m-3)x-m+2$$nghịch biến trên \(\mathbb{R}\).
| \(m\in(-\infty;-3)\cup(1;+\infty)\) | |
| \(m\in[-3;1]\) | |
| \(m\in(-\infty;1]\) | |
| \(m\in(-3;1)\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}+mx^2-(2m+3)x+4$$nghịch biến trên \(\mathbb{R}\).
| \(-1\leq m\leq3\) | |
| \(-3< m<1\) | |
| \(-1< m<3\) | |
| \(-3\leq m\leq1\) |
Cho hàm số \(y=f(x)\). Biết rằng \(f(x)\) có đạo hàm \(f'(x)\) với đồ thị như hình vẽ.

Khẳng định nào sau đây đúng về hàm số \(y=f(x)\)?
| Hàm số đồng biến trên khoảng \((-\infty;-1)\) | |
| Hàm số đồng biến trên khoảng \((-1;0)\) | |
| Hàm số đồng biến trên khoảng \((1;2)\) | |
| Hàm số nghịch biến trên khoảng \((0;+\infty)\) |
Cho hàm số \(y=f(x)\). Biết rằng \(f(x)\) có đạo hàm \(f'(x)\) với đồ thị như hình vẽ.

Khẳng định nào sau đây sai?
| Hàm số \(y=f(x)\) nghịch biến trên khoảng \((-\infty;-2)\) | |
| Hàm số \(y=f(x)\) đồng biến trên khoảng \((1;+\infty)\) | |
| Hàm số \(y=f(x)\) luôn tăng trên khoảng \((-1;1)\) | |
| Hàm số \(y=f(x)\) giảm trên đoạn có độ dài bằng \(2\) |
Cho hàm số \(y=x^3+3x^2-4\) có bảng biến thiên như hình vẽ. Tìm \(a\) và \(b\).

| \(a=+\infty,\;b=2\) | |
| \(a=-\infty,\;b=-4\) | |
| \(a=-\infty,\;b=1\) | |
| \(a=+\infty,\;b=3\) |