Cho hàm số \(f\left(x\right)\) có \(f\left(0\right)=0\) và \(f'\left(x\right)=\cos x\cdot\cos^22x\), \(\forall x\in\mathbb{R}\). Khi đó \(\displaystyle\int\limits_0^{\pi}f\left(x\right)\mathrm{\,d}x\) bằng
| \(\dfrac{1042}{225}\) | |
| \(\dfrac{208}{225}\) | |
| \(\dfrac{242}{225}\) | |
| \(\dfrac{149}{225}\) |
Diện tích \(S\) của hình phẳng giới hạn bởi các đường \(y=2x^2\), \(y=-1,\,x=0\) và \(x=1\) được tính bởi công thức nào dưới đây?
| \(S=\pi\displaystyle\int\limits_0^1\left(2x^2+1\right)\mathrm{\,d}x\) | |
| \(S=\displaystyle\int\limits_0^1\left(2x^2-1\right)\mathrm{\,d}x\) | |
| \(S=\displaystyle\int\limits_0^1\left(2x^2+1\right)^2\mathrm{\,d}x\) | |
| \(S=\displaystyle\int\limits_0^1\left(2x^2+1\right)\mathrm{\,d}x\) |
Xét \(\displaystyle\int\limits_0^2x\cdot\mathrm{e}^{x^2}\mathrm{\,d}x\), nếu đặt \(u=x^2\) thì \(\displaystyle\int\limits_0^2x\cdot\mathrm{e}^{x^2}\mathrm{\,d}x\) bằng
| \(2\displaystyle\int\limits_0^2\mathrm{e}^u\mathrm{\,d}u\) | |
| \(2\displaystyle\int\limits_0^4\mathrm{e}^u\mathrm{\,d}u\) | |
| \(\dfrac{1}{2}\displaystyle\int\limits_0^2\mathrm{e}^u\mathrm{\,d}u\) | |
| \(\dfrac{1}{2}\displaystyle\int\limits_0^4\mathrm{e}^u\mathrm{\,d}u\) |
Nếu \(\displaystyle\int\limits_0^1f\left(x\right)\mathrm{\,d}x=4\) thì \(\displaystyle\int\limits_0^12f\left(x\right)\mathrm{\,d}x\) bằng
| \(16\) | |
| \(4\) | |
| \(2\) | |
| \(8\) |
Hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên khoảng \(K\) nếu
| \(F'(x)=-f(x),\,\forall x\in K\) | |
| \(f'(x)=F(x),\,\forall x\in K\) | |
| \(F'(x)=f(x),\,\forall x\in K\) | |
| \(f'(x)=-F(x),\,\forall x\in K\) |
Kí hiệu \((H)\) là hình phẳng giới hạn bởi đồ thị \(y=x^2-ax\) với trục hoành (\(a\neq0\)). Quay hình \((H)\) xung quanh trục hoành ta thu được khối tròn xoay có thể tích \(V=\dfrac{16\pi}{15}\). Tìm \(a\).
| \(a=-2\) | |
| \(a=-3\) | |
| \(a=\pm2\) | |
| \(a=2\) |
Cho hình phẳng \((D)\) giới hạn bởi đồ thị hàm số \(y=\sqrt{x}\), hai đường thẳng \(x=1\), \(x=2\) và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay \((D)\) quanh trục hoành.
| \(3\pi\) | |
| \(\dfrac{3}{2}\) | |
| \(\dfrac{3\pi}{2}\) | |
| \(\dfrac{2\pi}{3}\) |
Cho hình \(D\) giới hạn bởi các đường \(y=x^2-2\) và \(y=-|x|\). Khi đó diện tích của hình \(D\) là
| \(\dfrac{13}{3}\) | |
| \(\dfrac{7\pi}{3}\) | |
| \(\dfrac{7}{3}\) | |
| \(\dfrac{13\pi}{3}\) |

Tính diện tích hình phẳng tạo thành bởi parabol \(y=x^2\), đường thẳng \(y=-x+2\) và trục hoành trên đoạn \([0;2]\) (phần gạch sọc trong hình vẽ).
| \(\dfrac{5}{6}\) | |
| \(\dfrac{7}{6}\) | |
| \(\dfrac{2}{3}\) | |
| \(\dfrac{3}{5}\) |

Diện tích hình phẳng \((H)\) giới hạn bởi đồ thị của hàm số \(y=f(x)\), trục hoành và hai đường thẳng \(x=a\), \(x=b\) (\(a<b\) và \(f(x)\) liên tục trên \([a;b]\)) (phần gạch sọc trong hình vẽ) tính theo công thức
| \(S=-\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x\) | |
| \(S=\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\) | |
| \(S=\left|\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\right|\) | |
| \(S=\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x\) |
Nếu hàm số \(y=f(x)\) liên tục trên đoạn \([a;b]\) thì diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hàm số \(y=f(x)\), trục hoành và hai đường thẳng \(x=a\), \(x=b\) là
| \(\displaystyle\int\limits_{a}^{b}\left|f(x)-g(x)\right|\mathrm{\,d}x\) | |
| \(\displaystyle\int\limits_{b}^{a}\left|f(x)\right|\mathrm{\,d}x\) | |
| \(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\) | |
| \(\displaystyle\int\limits_{a}^{b}\left|f(x)\right|\mathrm{\,d}x\) |
Hàm số \(y=f(x)\) liên tục trên \([1;4]\) và thỏa mãn \(f(x)=\dfrac{f\left(2\sqrt{x}-1\right)}{\sqrt{x}}+\dfrac{\ln x}{x}\). Tính tích phân \(I=\displaystyle\int\limits_{3}^{4}f(x)\mathrm{\,d}x\).
| \(I=3+2\ln^22\) | |
| \(I=\ln^2\) | |
| \(I=2\ln2\) | |
| \(I=2\ln^22\) |
Cho hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?
| \(4< f(5)<5\) | |
| \(3< f(5)<4\) | |
| \(1< f(5)<2\) | |
| \(2< f(5)<3\) |
Cho \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2+1}{x+1}\mathrm{\,d}x=a+b\ln c\), với \(a\in\mathbb{Q}\), \(b\in\mathbb{Z}\), \(c\) là số nguyên tố. Ta có \(2a+b+c\) bằng
| \(5\) | |
| \(4\) | |
| \(3\) | |
| \(2\) |
Giả sử tích phân \(I=\displaystyle\int\limits_{1}^{6}\dfrac{1}{2x+1}\mathrm{\,d}x=\ln M\), tìm \(M\).
| \(M=13\) | |
| \(M=4,33\) | |
| \(M=\sqrt{\dfrac{13}{3}}\) | |
| \(M=\dfrac{13}{3}\) |
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\) liên tục trên \([0;2]\) và \(f(2)=3\), \(\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x=3\). Tính \(\displaystyle\int\limits_{0}^{2}x\cdot f'(x)\mathrm{\,d}x\).
| \(6\) | |
| \(3\) | |
| \(0\) | |
| \(-3\) |
Giá trị của tích phân \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}x\sin x\mathrm{\,d}x\) bằng
| \(\dfrac{4+\pi}{4\sqrt{2}}\) | |
| \(\dfrac{4-\pi}{4\sqrt{2}}\) | |
| \(\dfrac{2-\pi}{2\sqrt{2}}\) | |
| \(\dfrac{2+\pi}{2\sqrt{2}}\) |
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=\dfrac{1}{2x-1}\) và \(f(1)=1\). Giá trị \(f(5)\) bằng
| \(1+\ln2\) | |
| \(1+\ln3\) | |
| \(\ln2\) | |
| \(\ln3\) |
Cho hàm số \(f(x)\) có đạo hàm \(f'(x)\) liên tục trên \([a;b]\), \(f(b)=5\), \(\displaystyle\int\limits_{a}^{b}f'(x)\mathrm{\,d}x=3\sqrt{5}\). Tính \(f(a)\).
| \(f(a)=3\sqrt{5}\) | |
| \(f(a)=\sqrt{5}\left(\sqrt{5}-3\right)\) | |
| \(f(a)=\sqrt{3}\left(\sqrt{5}-3\right)\) | |
| \(f(a)=\sqrt{5}\left(3-\sqrt{5}\right)\) |
Cho hàm số \(f(x),\,g(x)\) liên tục trên \([a;b]\). Khẳng định nào sau đây sai?
| \(\displaystyle\int\limits_{a}^{b}\left[f(x)+g(x)\right]\mathrm{\,d}x=\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{a}^{b}g(x)\mathrm{\,d}x\) | |
| \(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{b}^{a}f(x)\mathrm{\,d}x\) | |
| \(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{a}^{b}f(t)\mathrm{\,d}t\) | |
| \(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x\) |