Ngân hàng bài tập

Bài tập tương tự

B

Cho hình bình hành \(ABCD\), tâm \(M\). Mệnh đề nào sau đây sai?

\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\)
\(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\)
\(\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BM}\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MC}+\overrightarrow{MD}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) đều, cạnh \(a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|\).

\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=2a\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=a\sqrt{3}\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=\dfrac{\sqrt{3}}{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) vuông tại \(A\) và có \(AB=3\), \(AC=4\). Tính \(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|\).

\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=2\)
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=2\sqrt{13}\)
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=5\)
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=\sqrt{13}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho ba điểm phân biệt \(A,\,B,\,C\). Mệnh đề nào sau đây đúng?

\(AB+BC=AC\)
\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}=\vec{0}\)
\(\overrightarrow{AB}=\overrightarrow{BC}\Leftrightarrow\left|\overrightarrow{CA}\right|=\left|\overrightarrow{BC}\right|\)
\(\overrightarrow{AB}-\overrightarrow{CA}=\overrightarrow{BC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\). Khẳng định nào sau đây đúng?

\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BC}\)
\(\overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB}\)
\(\overrightarrow{CA}+\overrightarrow{BA}=\overrightarrow{CB}\)
\(\overrightarrow{AA}+\overrightarrow{BB}=\overrightarrow{AB}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{u}=(1;2;-2)$ và $\overrightarrow{v}=(2;-2;3)$. Tọa độ của vectơ $\overrightarrow{u}+\overrightarrow{v}$ là

$(-1;4;-5)$
$(1;-4;5)$
$(3;0;1)$
$(3;0;-1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{u}=(1;3;-2)$ và $\overrightarrow{v}=(2;1;-1)$. Tọa độ của vectơ $\overrightarrow{u}-\overrightarrow{v}$ là

$(3;4;-3)$
$(-1;2;-3)$
$(-1;2;-1)$
$(1;-2;1)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian, với $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ là ba vectơ bất kỳ, mệnh đề nào dưới đây đúng?

$\overrightarrow{a}\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}\cdot\overrightarrow{b}+\overrightarrow{a}\cdot \overrightarrow{c}$
$\overrightarrow{a}\left(\overrightarrow{b}-\overrightarrow{c}\right)=\overrightarrow{a}\cdot \overrightarrow{b}+\overrightarrow{a}\cdot \overrightarrow{c}$
$\overrightarrow{a}\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}\cdot \overrightarrow{b}-\overrightarrow{a}\cdot \overrightarrow{c}$
$\overrightarrow{a}\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}\cdot \overrightarrow{b}+\overrightarrow{b}\cdot \overrightarrow{c}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian, cho hình bình hành $ABCD$. Vectơ $\overrightarrow{AB}+\overrightarrow{AD}$ bằng

$\overrightarrow{AC}$
$\overrightarrow{BC}$
$\overrightarrow{BD}$
$\overrightarrow{CA}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{a}=(0;1)$, $\overrightarrow{b}=(-1;2)$, $\overrightarrow{c}=(-3;-2)$. Tọa độ của vectơ $\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}$ là

$(10;-15)$
$(15;10)$
$(10;15)$
$(-10;15)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng $Oxy$, cho hai vectơ $\overrightarrow{a}=(2;-4)$, $\overrightarrow{b}=(-5;3)$. Tìm tọa độ của vectơ $\overrightarrow{x}=2\overrightarrow{a}-\overrightarrow{b}$.

$\overrightarrow{x}=(7;-7)$
$\overrightarrow{x}=(9;5)$
$\overrightarrow{x}=(9;-11)$
$\overrightarrow{x}=(-1;5)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong mặt phẳng $Oxy$, cho $\overrightarrow{a}=(3;-4)$, $\overrightarrow{b}=(-1;2)$. Tọa độ của $\overrightarrow{a}+\overrightarrow{b}$ là

$(-4;6)$
$(2;-2)$
$(4;-6)$
$(-3;-8)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong mặt phẳng $Oxy$, cho hai vectơ $\overrightarrow{a}=\left(3;-4\right)$ và $\overrightarrow{b}=\left(1;-2\right)$. Tìm tọa độ của vectơ $\overrightarrow{a}+\overrightarrow{b}$.

$\left(2;-2\right)$
$\left(4;-6\right)$
$\left(4;6\right)$
$\left(-4;6\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho $\overrightarrow{a}=\left(6;5\right)$, $\overrightarrow{b}=\left(3;-2\right)$. Tìm tọa độ $\overrightarrow{c}$ sao cho $2\overrightarrow{a}+3\overrightarrow{c}=\overrightarrow{b}$.

$\overrightarrow{c}=\left(-3;-4\right)$
$\overrightarrow{c}=\left(3;-4\right)$
$\overrightarrow{c}=\left(-2;-3\right)$
$\overrightarrow{c}=\left(-3;-2\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng $Oxy$, cho $\overrightarrow{u}=(3;-2)$, $\overrightarrow{v}=(7;4)$. Tìm tọa độ của $\overrightarrow{x}=3\overrightarrow{u}-4\overrightarrow{v}$.

$\overrightarrow{x}=(19;22)$
$\overrightarrow{x}=(-19;-22)$
$\overrightarrow{x}=(-19;22)$
$\overrightarrow{x}=(19;-22)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=\left(3;0;1\right)\), \(\overrightarrow{b}=\left(1;-1;-2\right)\), \(\overrightarrow{c}=\left(2;1;-1\right)\). Tính \(T=\overrightarrow{a}\cdot\left(\overrightarrow{b}+\overrightarrow{c}\right)\).

\(T=3\)
\(T=6\)
\(T=0\)
\(T=9\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian với hệ tọa độ \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=(1;2;-2)\), \(\overrightarrow{b}=(-4;0;1)\) và \(\overrightarrow{c}=(0;3;3)\). Tính \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot\overrightarrow{c}\).

\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=3\)
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=9\)
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=0\)
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=-10\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian với hệ tọa độ \(Oxyz\), cho hai vectơ \(\overrightarrow{a}=(1;-2;5)\) và \(\overrightarrow{b}=(-2;4;2)\). Tìm tọa độ của vectơ \(\overrightarrow{a}-\overrightarrow{b}\).

\(\overrightarrow{a}-\overrightarrow{b}=(3;-2;3)\)
\(\overrightarrow{a}-\overrightarrow{b}=(3;-6;3)\)
\(\overrightarrow{a}-\overrightarrow{b}=(-3;6;-3)\)
\(\overrightarrow{a}-\overrightarrow{b}=(1;-2;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian với hệ tọa độ \(Oxyz\), cho \(\overrightarrow{a}=(1;-1;3)\), \(\overrightarrow{b}=(2;0;-1)\). Tìm tọa độ véctơ \(\overrightarrow{u}=2\overrightarrow{a}-3\overrightarrow{b}\).

\(\overrightarrow{u}=\left(1;3;-11\right)\)
\(\overrightarrow{u}=\left(4;2;-9\right)\)
\(\overrightarrow{u}=\left(-4;-5;9\right)\)
\(\overrightarrow{u}=\left(-4;-2;9\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\). Chọn câu đúng trong các câu sau:

\(\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\)
\(\overrightarrow{a}+\overrightarrow{b}=\left(b_1-a_1;b_2-a_2;b_3-a_3\right)\)
\(k\overrightarrow{b}=\left(ka_1;ka_2;ka_3\right),\,k\in\mathbb{R}\)
\(\overrightarrow{a}-\overrightarrow{b}=\left(a_2-b_2;a_1-b_1;a_3-b_3\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự