Cho hình bình hành \(ABCD\), tâm \(M\). Mệnh đề nào sau đây sai?
| \(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\) | |
| \(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\) | |
| \(\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BM}\) | |
| \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MC}+\overrightarrow{MD}\) |
Cho tam giác \(ABC\) đều, cạnh \(a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|\).
| \(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=2a\) | |
| \(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=a\sqrt{3}\) | |
| \(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=\dfrac{\sqrt{3}}{2}\) | |
| \(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=a\) |
Cho tam giác \(ABC\) vuông tại \(A\) và có \(AB=3\), \(AC=4\). Tính \(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|\).
| \(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=2\) | |
| \(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=2\sqrt{13}\) | |
| \(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=5\) | |
| \(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=\sqrt{13}\) |
Cho ba điểm phân biệt \(A,\,B,\,C\). Mệnh đề nào sau đây đúng?
| \(AB+BC=AC\) | |
| \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}=\vec{0}\) | |
| \(\overrightarrow{AB}=\overrightarrow{BC}\Leftrightarrow\left|\overrightarrow{CA}\right|=\left|\overrightarrow{BC}\right|\) | |
| \(\overrightarrow{AB}-\overrightarrow{CA}=\overrightarrow{BC}\) |
Cho tam giác \(ABC\). Khẳng định nào sau đây đúng?
| \(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BC}\) | |
| \(\overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB}\) | |
| \(\overrightarrow{CA}+\overrightarrow{BA}=\overrightarrow{CB}\) | |
| \(\overrightarrow{AA}+\overrightarrow{BB}=\overrightarrow{AB}\) |
Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{u}=(1;2;-2)$ và $\overrightarrow{v}=(2;-2;3)$. Tọa độ của vectơ $\overrightarrow{u}+\overrightarrow{v}$ là
| $(-1;4;-5)$ | |
| $(1;-4;5)$ | |
| $(3;0;1)$ | |
| $(3;0;-1)$ |
Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{u}=(1;3;-2)$ và $\overrightarrow{v}=(2;1;-1)$. Tọa độ của vectơ $\overrightarrow{u}-\overrightarrow{v}$ là
| $(3;4;-3)$ | |
| $(-1;2;-3)$ | |
| $(-1;2;-1)$ | |
| $(1;-2;1)$ |
Trong không gian, với $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ là ba vectơ bất kỳ, mệnh đề nào dưới đây đúng?
| $\overrightarrow{a}\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}\cdot\overrightarrow{b}+\overrightarrow{a}\cdot \overrightarrow{c}$ | |
| $\overrightarrow{a}\left(\overrightarrow{b}-\overrightarrow{c}\right)=\overrightarrow{a}\cdot \overrightarrow{b}+\overrightarrow{a}\cdot \overrightarrow{c}$ | |
| $\overrightarrow{a}\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}\cdot \overrightarrow{b}-\overrightarrow{a}\cdot \overrightarrow{c}$ | |
| $\overrightarrow{a}\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}\cdot \overrightarrow{b}+\overrightarrow{b}\cdot \overrightarrow{c}$ |
Trong không gian, cho hình bình hành $ABCD$. Vectơ $\overrightarrow{AB}+\overrightarrow{AD}$ bằng
| $\overrightarrow{AC}$ | |
| $\overrightarrow{BC}$ | |
| $\overrightarrow{BD}$ | |
| $\overrightarrow{CA}$ |
Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{a}=(0;1)$, $\overrightarrow{b}=(-1;2)$, $\overrightarrow{c}=(-3;-2)$. Tọa độ của vectơ $\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}$ là
| $(10;-15)$ | |
| $(15;10)$ | |
| $(10;15)$ | |
| $(-10;15)$ |
Trong mặt phẳng $Oxy$, cho hai vectơ $\overrightarrow{a}=(2;-4)$, $\overrightarrow{b}=(-5;3)$. Tìm tọa độ của vectơ $\overrightarrow{x}=2\overrightarrow{a}-\overrightarrow{b}$.
| $\overrightarrow{x}=(7;-7)$ | |
| $\overrightarrow{x}=(9;5)$ | |
| $\overrightarrow{x}=(9;-11)$ | |
| $\overrightarrow{x}=(-1;5)$ |
Trong mặt phẳng $Oxy$, cho $\overrightarrow{a}=(3;-4)$, $\overrightarrow{b}=(-1;2)$. Tọa độ của $\overrightarrow{a}+\overrightarrow{b}$ là
| $(-4;6)$ | |
| $(2;-2)$ | |
| $(4;-6)$ | |
| $(-3;-8)$ |
Trong mặt phẳng $Oxy$, cho hai vectơ $\overrightarrow{a}=\left(3;-4\right)$ và $\overrightarrow{b}=\left(1;-2\right)$. Tìm tọa độ của vectơ $\overrightarrow{a}+\overrightarrow{b}$.
| $\left(2;-2\right)$ | |
| $\left(4;-6\right)$ | |
| $\left(4;6\right)$ | |
| $\left(-4;6\right)$ |
Cho $\overrightarrow{a}=\left(6;5\right)$, $\overrightarrow{b}=\left(3;-2\right)$. Tìm tọa độ $\overrightarrow{c}$ sao cho $2\overrightarrow{a}+3\overrightarrow{c}=\overrightarrow{b}$.
| $\overrightarrow{c}=\left(-3;-4\right)$ | |
| $\overrightarrow{c}=\left(3;-4\right)$ | |
| $\overrightarrow{c}=\left(-2;-3\right)$ | |
| $\overrightarrow{c}=\left(-3;-2\right)$ |
Trong mặt phẳng $Oxy$, cho $\overrightarrow{u}=(3;-2)$, $\overrightarrow{v}=(7;4)$. Tìm tọa độ của $\overrightarrow{x}=3\overrightarrow{u}-4\overrightarrow{v}$.
| $\overrightarrow{x}=(19;22)$ | |
| $\overrightarrow{x}=(-19;-22)$ | |
| $\overrightarrow{x}=(-19;22)$ | |
| $\overrightarrow{x}=(19;-22)$ |
Trong không gian \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=\left(3;0;1\right)\), \(\overrightarrow{b}=\left(1;-1;-2\right)\), \(\overrightarrow{c}=\left(2;1;-1\right)\). Tính \(T=\overrightarrow{a}\cdot\left(\overrightarrow{b}+\overrightarrow{c}\right)\).
| \(T=3\) | |
| \(T=6\) | |
| \(T=0\) | |
| \(T=9\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=(1;2;-2)\), \(\overrightarrow{b}=(-4;0;1)\) và \(\overrightarrow{c}=(0;3;3)\). Tính \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot\overrightarrow{c}\).
| \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=3\) | |
| \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=9\) | |
| \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=0\) | |
| \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=-10\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho hai vectơ \(\overrightarrow{a}=(1;-2;5)\) và \(\overrightarrow{b}=(-2;4;2)\). Tìm tọa độ của vectơ \(\overrightarrow{a}-\overrightarrow{b}\).
| \(\overrightarrow{a}-\overrightarrow{b}=(3;-2;3)\) | |
| \(\overrightarrow{a}-\overrightarrow{b}=(3;-6;3)\) | |
| \(\overrightarrow{a}-\overrightarrow{b}=(-3;6;-3)\) | |
| \(\overrightarrow{a}-\overrightarrow{b}=(1;-2;1)\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho \(\overrightarrow{a}=(1;-1;3)\), \(\overrightarrow{b}=(2;0;-1)\). Tìm tọa độ véctơ \(\overrightarrow{u}=2\overrightarrow{a}-3\overrightarrow{b}\).
| \(\overrightarrow{u}=\left(1;3;-11\right)\) | |
| \(\overrightarrow{u}=\left(4;2;-9\right)\) | |
| \(\overrightarrow{u}=\left(-4;-5;9\right)\) | |
| \(\overrightarrow{u}=\left(-4;-2;9\right)\) |
Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\). Chọn câu đúng trong các câu sau:
| \(\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\) | |
| \(\overrightarrow{a}+\overrightarrow{b}=\left(b_1-a_1;b_2-a_2;b_3-a_3\right)\) | |
| \(k\overrightarrow{b}=\left(ka_1;ka_2;ka_3\right),\,k\in\mathbb{R}\) | |
| \(\overrightarrow{a}-\overrightarrow{b}=\left(a_2-b_2;a_1-b_1;a_3-b_3\right)\) |