Viết phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=-x^3+x$ tại điểm $M(-2;6)$.
| $y=-11x-16$ | |
| $y=-11x-28$ | |
| $y=-11x+28$ | |
| $y=-11x+16$ |
Phương trình tiếp tuyến của đồ thị hàm số $y=\dfrac{1}{2}x^2-2x+1$ biết tiếp tuyến song song với đường thẳng $y=2x+3$ là
| $y=2x+5$ | |
| $y=3x+5$ | |
| $y=-2x+7$ | |
| $y=2x–7$ |
Gọi $(d)$ là tiếp tuyến của đồ thị hàm số $y=f(x)=-x^3+x$ tại điểm $M(1;0)$. Tìm hệ số góc của $(d)$.
| $-2$ | |
| $2$ | |
| $1$ | |
| $0$ |
Gọi $M(a;b)$ là điểm thuộc đồ thị hàm số $y=f(x)=x^3-3x^2+2$ $(\mathscr{C})$ sao cho tiếp tuyến của $(\mathscr{C})$ tại điểm $M$ có hệ số góc nhỏ nhất. Tính $a+b$.
| $-3$ | |
| $0$ | |
| $1$ | |
| $2$ |
Tiếp tuyến của đồ thị hàm số \(y=x^3-3x+2\) vuông góc với \(d\colon y=-\dfrac 19x+2\) là
| \(y=-\dfrac 19x+18,\,y=-\dfrac 19x+5\) | |
| \(y=\dfrac 19x+18,\,y=\dfrac 19x-14\) | |
| \(y=9x+18,\,y=9x-14\) | |
| \(y=9x+18,\,y=9x+5\) |
Cho hàm số \(y=x^3-6x^2+9x\) có đồ thị \(\left(\mathscr{C}\right)\). Tiếp tuyến của \(\left(\mathscr{C}\right)\) song song với đường thẳng \(d\colon y=9x\) có phương trình là
| \(y=9x+40\) | |
| \(y=9x-40\) | |
| \(y=9x+32\) | |
| \(y=9x-32\) |
Viết phương trình tiếp tuyến của đồ thị hàm số \(y=x^3-3x^2\), biết tiếp tuyến có hệ số góc bằng \(-3\).
| \(y=-3x-2\) | |
| \(y=-3\) | |
| \(y=-3x-5\) | |
| \(y=-3x+1\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=x^3-x^2+x+1\) tại điểm có tung độ bằng \(2\) là
| \(y=2x\) | |
| \(y=9x-11\) | |
| \(y=54x+32\) | |
| \(y=2x+4\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=x^3+3x^2-2\) tại điểm có hoành độ bằng \(x_0=-3\) là
| \(y=30x+25\) | |
| \(y=9x-25\) | |
| \(y=30x-25\) | |
| \(y=9x+25\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=x^3-3x^2+2\) tại điểm \(M(-1;-2)\) là
| \(y=9x+11\) | |
| \(y=9x-11\) | |
| \(y=9x-7\) | |
| \(y=9x+7\) |
Giá trị nhỏ nhất của hàm số $y=x^3+3x^2-1$ trên đoạn $[-1;1]$ bằng
| $3$ | |
| $-1$ | |
| $1$ | |
| $2$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
| $12$ | |
| $11$ | |
| $6$ | |
| $5$ |
Tìm các giá trị thực của tham số $m$ để hàm số $f(x)=-x^3-3x+m$ có giá trị nhỏ nhất trên đoạn $[-1;1]$ bằng $0$.
| $m=-4$ | |
| $m=-2$ | |
| $m=2$ | |
| $m=4$ |
Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=4x^3+mx^2-3x$. Tìm các giá trị của tham số $m$ sao cho $x_1+4x_2=0$.
| $m=0$ | |
| $m=\pm\dfrac{9}{2}$ | |
| $m=\pm\dfrac{3}{2}$ | |
| $m=\pm\dfrac{1}{2}$ |
Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=x^3-3mx^2+3\big(m^2-1\big)x-m^3+m$. Tìm các giá trị của tham số $m$ sao cho $x_1^2+x_2^2-x_1x_2=7$.
| $m=0$ | |
| $m=\pm\dfrac{9}{2}$ | |
| $m=\pm\dfrac{1}{2}$ | |
| $m=\pm2$ |
Gọi $S$ là tập hợp các giá trị nguyên để hàm số $y=\dfrac{x^3}{3}-(m+1)x^2+(m-2)x+2m-3$ đạt cực trị tại hai điểm $x_1,\,x_2$ thỏa mãn $x_1^2+x_2^2=18$. Tính tổng $P$ của tất cả các giá trị $m$ trong $S$.
| $P=-4$ | |
| $P=1$ | |
| $P=-\dfrac{3}{2}$ | |
| $P=-5$ |
Tìm giá trị của tham số $m$ để hàm số $y=x^3-3x^2+mx-1$ có hai điểm cực trị $x_1,\,x_2$ thỏa mãn $x_1^2+x_2^2=6$.
| $m=1$ | |
| $m=-1$ | |
| $m=3$ | |
| $m=-3$ |
Đồ thị hàm số $y=x^3-3x^2-9x+1$ có hai điểm cực trị là $A$ và $B$. Điểm nào sau đây thuộc đường thẳng $AB$?
| $M(0;-1)$ | |
| $Q(-1;10)$ | |
| $P(1;0)$ | |
| $N(1;-10)$ |
Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y=-2x^3+3x^2+1$.
| $y=x+1$ | |
| $y=-x+1$ | |
| $y=x-1$ | |
| $y=-x-1$ |
Biết đồ thị hàm số $y=x^3-3x+1$ có hai điểm cực trị $A,\,B$. Khi đó đường thẳng $AB$ có phương trình
| $y=2x-1$ | |
| $y=x-2$ | |
| $y=-x+2$ | |
| $y=-2x+1$ |