Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, $SA\bot (ABCD)$ và $SA=a$. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABCD)$ bằng
| $45^\circ$ | |
| $90^\circ$ | |
| $30^\circ$ | |
| $60^\circ$ |
Cho hình chóp $S.ABCD$ có $ABCD$ là hình chữ nhật và $SA\bot (ABCD)$. Mệnh đề nào dưới đây đúng?
| $AB\bot(SAD)$ | |
| $BC\bot(SAD)$ | |
| $AC\bot(SAD)$ | |
| $BD\bot(SAD)$ |
Trong không gian cho hai vectơ $\overrightarrow{u}$, $\overrightarrow{v}$ tạo với nhau một góc $60^\circ$, $\left|\overrightarrow{u}\right|=2$ và $\left|\overrightarrow{v}\right|=3$. Tích vô hướng $\overrightarrow{u}\cdot\overrightarrow{v}$ bằng
| $3$ | |
| $6$ | |
| $2$ | |
| $3\sqrt{3}$ |
Cho hàm số $f\left(x\right)=\left(x+1\right)^3$. Giá trị của $f''\left(1\right)$ bằng
| $12$ | |
| $6$ | |
| $24$ | |
| $4$ |
Đạo hàm cấp hai của hàm số $y=x^3+2x$ là
| $6x$ | |
| $6x+2$ | |
| $3x$ | |
| $3x+2$ |
Đạo hàm của hàm số $y=\sin2x$ là
| $2\cos2x$ | |
| $-2\cos2x$ | |
| $\cos2x$ | |
| $-\cos2x$ |
Đạo hàm của hàm số $y=x\sin x$ là
| $\sin x+x\cos x$ | |
| $\sin x-x\cos x$ | |
| $\sin x+\cos x$ | |
| $\cos x+x\sin x$ |
Đạo hàm của hàm số $y=\tan\left(2x+1\right)$ là
| $\dfrac{2}{\cos^2\left(2x+1\right)}$ | |
| $-\dfrac{2}{\cos^2\left(2x+1\right)}$ | |
| $\dfrac{1}{\cos^2\left(2x+1\right)}$ | |
| $\dfrac{2}{\sin^2\left(2x+1\right)}$ |
Đạo hàm của hàm số $y=3x^2+\sqrt{x}$ là
| $6x+\dfrac{1}{2\sqrt{x}}$ | |
| $6x-\dfrac{1}{2\sqrt{x}}$ | |
| $3x+\dfrac{1}{2\sqrt{x}}$ | |
| $6x+\dfrac{1}{\sqrt{x}}$ |
Đạo hàm của hàm số $y=\left(2x+1\right)^2$ là
| $y'=8x+4$ | |
| $y'=2x+1$ | |
| $y'=4x+2$ | |
| $y'=4x+1$ |
Tiếp tuyến của đồ thị hàm số $y=x^3-2x^2$ tại điểm $M\left(1;-1\right)$ có hệ số góc bằng
| $-1$ | |
| $1$ | |
| $7$ | |
| $5$ |
Giá trị thực của tham số $m$ để hàm số $f\left(x\right)=\begin{cases}2x+1 &\text{khi }x\ge2\\ m &\text{khi }x< 2\end{cases}$ liên tục tại $x=2$ bằng
| $5$ | |
| $2$ | |
| $3$ | |
| $1$ |
Cho $\left(u_n\right)$ là cấp số nhân với $u_1=3$ và công bội $q=\dfrac{1}{2}$. Gọi $S_n$ là tổng của $n$ số hạng đầu tiên của cấp số nhân đã cho. Ta có $\lim S_n$ bằng
| $6$ | |
| $\dfrac{3}{2}$ | |
| $3$ | |
| $\dfrac{1}{2}$ |
Cho hình lập phương $ABCD.A'B'C'D'$ có cạnh bằng $a$. Khoảng cách từ $A'$ đến mặt phẳng $(ABCD)$ bằng
| $a$ | |
| $2a$ | |
| $3a$ | |
| $\dfrac{a}{2}$ |
Hình lăng trụ đứng tam giác có bao nhiêu mặt là hình chữ nhật?
| $3$ | |
| $1$ | |
| $5$ | |
| $2$ |
Trong không gian cho điểm $A$ và mặt phẳng $(P)$. Mệnh đề nào dưới đây đúng?
| Có đúng một đường thẳng đi qua $A$ và vuông góc với $(P)$ | |
| Có đúng hai đường thẳng đi qua $A$ và vuông góc với $(P)$ | |
| Có vô số đường thẳng đi qua $A$ và vuông góc với $(P)$ | |
| Không tồn tại đường thẳng đi qua $A$ và vuông góc với $(P)$ |
Trong không gian, với $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ là ba vectơ bất kỳ, mệnh đề nào dưới đây đúng?
| $\overrightarrow{a}\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}\cdot\overrightarrow{b}+\overrightarrow{a}\cdot \overrightarrow{c}$ | |
| $\overrightarrow{a}\left(\overrightarrow{b}-\overrightarrow{c}\right)=\overrightarrow{a}\cdot \overrightarrow{b}+\overrightarrow{a}\cdot \overrightarrow{c}$ | |
| $\overrightarrow{a}\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}\cdot \overrightarrow{b}-\overrightarrow{a}\cdot \overrightarrow{c}$ | |
| $\overrightarrow{a}\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}\cdot \overrightarrow{b}+\overrightarrow{b}\cdot \overrightarrow{c}$ |
Trong không gian, cho hình bình hành $ABCD$. Vectơ $\overrightarrow{AB}+\overrightarrow{AD}$ bằng
| $\overrightarrow{AC}$ | |
| $\overrightarrow{BC}$ | |
| $\overrightarrow{BD}$ | |
| $\overrightarrow{CA}$ |
Đạo hàm của hàm số $y=x+\sin x$ là
| $1+\cos x$ | |
| $1-\cos x$ | |
| $\cos x$ | |
| $-\cos x$ |
$\lim\limits_{x\to0}\dfrac{\sin x}{x}$ bằng
| $1$ | |
| $-1$ | |
| $0$ | |
| $+\infty$ |