Cho hàm số $y=f(x)$ có đạo hàm, liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.

Hàm số $g(x)=\big[f(x)\big]^2$ nghịch biến trên khoảng nào sau đây?
| $(-1;1)$ | |
| $\left(0;\dfrac{5}{2}\right)$ | |
| $\left(\dfrac{5}{2};4\right)$ | |
| $(-2;-1)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$. Biết hàm số $f'(x)$ liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.

Hàm số $g(x)=f\left(\sqrt{x^2+1}\right)$ đồng biến trên khoảng
| $\left(-\infty;-\sqrt{3}\right)$ và $\left(0;\sqrt{3}\right)$ | |
| $\left(-\infty;-\sqrt{3}\right)$ và $\left(\sqrt{3};+\infty\right)$ | |
| $\left(-\sqrt{3};0\right)$ và $\left(\sqrt{3};+\infty\right)$ | |
| $\left(-\infty;-\sqrt{3}\right)$ và $\left(0;+\infty\right)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có đồ thị hàm $f'(x)$ như hình vẽ.

Tìm khoảng nghịch biến của hàm số $g(x)=f\big(x-x^2\big)$.
| $\left(-\dfrac{1}{2};+\infty\right)$ | |
| $\left(-\dfrac{3}{2};+\infty\right)$ | |
| $\left(-\infty;\dfrac{3}{2}\right)$ | |
| $\left(\dfrac{1}{2};+\infty\right)$ |
Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.
| $\left(-\infty;-\dfrac{14}{15}\right)$ | |
| $\left(-\infty;-\dfrac{14}{15}\right]$ | |
| $\left[-2;-\dfrac{14}{15}\right]$ | |
| $\left[-\dfrac{14}{15};+\infty\right)$ |
Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.
| $(-\infty;6]$ | |
| $(-\infty;3]$ | |
| $(-\infty;3)$ | |
| $[3;6]$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$, có bảng xét dấu đạo hàm như sau:

Hàm số $y=3f(2x-1)-4x^3+15x^2-18x+1$ đồng biến trên khoảng nào dưới đây?
| $(3;+\infty)$ | |
| $\left(1;\dfrac{3}{2}\right)$ | |
| $\left(\dfrac{5}{2};3\right)$ | |
| $\left(2;\dfrac{5}{2}\right)$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$. Đồ thị hàm số $f'(x)$ được cho như hình vẽ.

Hàm số $g(x)=4f(x)+x^2-4x+2022$ đồng biến trên khoảng nào sau đây?
| $[-2;0]$ và $[2;+\infty)$ | |
| $(-\infty;-2]$ và $[0;2]$ | |
| $[-2;2]$ | |
| $(-\infty;-2]$ và $[2;+\infty)$ |
Cho hàm số $f$ có đạo hàm liên tục trên $(-1;3)$. Bảng biến thiên của hàm số $f'(x)$ như hình vẽ.

Hàm số $g(x)=f\left(1-\dfrac{x}{2}\right)+x$ nghịch biến trên khoảng nào trong các khoảng sau?
| $(-4;-2)$ | |
| $(2;4)$ | |
| $(-2;0)$ | |
| $(0;2)$ |
Cho hàm bậc bốn $y=f(x)$ có đồ thị $f'(x)$ như hình vẽ bên.

Hàm số $y=f(1-3x)-4$ nghịch biến trên khoảng
| $\left(-\dfrac{1}{3};\dfrac{1}{3}\right)$ | |
| $(0;2)$ | |
| $(-\infty;-1)$ | |
| $\left(\dfrac{1}{3};\dfrac{2}{3}\right)$ |
Cho hàm số bậc bốn $y=f(x)$ thỏa mãn $f(0)=0$. Hàm số $y=f'(x)$ có đồ thị như hình vẽ.
Hàm số $g(x)=\left|2f\big(x^2+x\big)-x^4-2x^3+x^2+2x\right|$ có bao nhiêu cực trị?
| $4$ | |
| $5$ | |
| $6$ | |
| $7$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+y^2+(z-3)^2=8$ và hai điểm $A(4;4;3)$, $B(1;1;1)$. Gọi $\big(\mathscr{C}_1\big)$ là tập hợp các điểm $M\in(S)$ sao cho $|MA-2MB|$ đạt giá trị nhỏ nhất. Biết rằng $\big(\mathscr{C}_1\big)$ là một đường tròn có bán kính $R_1$. Tính $R_1$.
| $\sqrt{7}$ | |
| $\sqrt{6}$ | |
| $2\sqrt{2}$ | |
| $\sqrt{3}$ |
Có bao nhiêu số nguyên $a\in(1;2022]$ sao cho tồn tại số thực $x$ thỏa mãn $\left(a^{\log_3x}-1\right)^{\log_3a}=x+1$?
| $2018$ | |
| $2019$ | |
| $2020$ | |
| $1$ |
Cho hình trụ tròn xoay có hai đáy là hai hình tròn $(O,3)$ và $(O',3)$. Biết rằng tồn tại dây cung $AB$ thuộc đường tròn $(O)$ sao cho $\triangle O'AB$ là tam giác đều và mặt phẳng $(O'AB)$ hợp với đáy chứa đường tròn $(O)$ một góc $60^\circ$. Tính diện tích xung quanh $S_{\text{xq}}$ của hình nón có đỉnh $O'$, đáy là hình tròn $(O,3)$.
| $S_{\text{xq}}=\dfrac{54\pi\sqrt{7}}{7}$ | |
| $S_{\text{xq}}=\dfrac{81\pi\sqrt{7}}{7}$ | |
| $S_{\text{xq}}=\dfrac{27\pi\sqrt{7}}{7}$ | |
| $S_{\text{xq}}=\dfrac{36\pi\sqrt{7}}{7}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y+1}{-1}=\dfrac{z-5}{2}$ và mặt phẳng $(P)\colon2x+y+z-3=0$. Đường thẳng $\Delta$ đi qua điểm $A(2;-1;3)$, cắt đường thẳng $d$ và tạo với mặt phẳng $(P)$ một góc $30^\circ$ có phương trình là
| $\dfrac{x+2}{22}=\dfrac{y-1}{-13}=\dfrac{z+3}{8}$ | |
| $\dfrac{x-2}{1}=\dfrac{y+1}{-1}=\dfrac{z-3}{2}$ | |
| $\dfrac{x-2}{2}=\dfrac{y+1}{1}=\dfrac{z-3}{1}$ | |
| $\dfrac{x-2}{-11}=\dfrac{y+1}{5}=\dfrac{z-3}{2}$ |
Cho hai hàm số $f(x)=x^3+ax^2+bx+c$ và $g(x)=dx+e$ ($a,\,b,\,c,\,d,\,e\in\mathbb{R}$). Biết rằng đồ thị của hàm số $y=f(x)$ và $y=g(x)$ cắt nhau tại ba điểm $A,\,B,\,C$ sao cho $BC=2AB$, với phần diện tích $S_1$, $S_2$ như hình vẽ.
Khi đó $\dfrac{S_1}{S_2}$ bằng
| $\dfrac{5}{16}$ | |
| $\dfrac{5}{32}$ | |
| $\dfrac{3}{16}$ | |
| $\dfrac{3}{32}$ |
Cho các số phức $z,\,w$ thỏa mãn $|z|=4$ và $|w|=5$. Khi $|2z+w-9+12i|$ đạt giá trị nhỏ nhất thì $|z-w|$ bằng
| $\dfrac{11}{2}$ | |
| $\dfrac{\sqrt{13}}{2}$ | |
| $2$ | |
| $1$ |
Trên tập hợp số phức, xét phương trình $z^2-2(2m+1)z+4m^2=0$ ($m$ là tham số thực). Có tất cả bao nhiêu giá trị của tham số $m$ để phương trình có nghiệm $z_0$ thỏa mãn $\big|z_0\big|=1$?
| $3$ | |
| $1$ | |
| $2$ | |
| $4$ |
Cho lăng trụ $ABCD.A'B'C'D'$ có đáy $ABCD$ là hình chữ nhật với $AB=\sqrt{6}$, $AD=\sqrt{3}$, $A'C=3$ và mặt phẳng $\left(AA'C'C\right)$ vuông góc với mặt đáy. Biết hai mặt phẳng $\left(AA'C'C\right)$, $\left(AA'B'B\right)$ tạo với nhau góc $\alpha$ thỏa mãn $\tan\alpha =\dfrac{3}{4}$. Thể tích khối lăng trụ $ABCD.A'B'C'D'$ bằng
| $V=6$ | |
| $V=8$ | |
| $V=12$ | |
| $V=10$ |
Cho hàm số $f(x)$ thỏa mãn $f(0)=4$ và $f'(x)=2\sin^2x+3$, $\forall x\in\mathbb{R}$. Khi đó $\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}f(x)\mathrm{d}x$ bằng
| $\dfrac{\pi^2-2}{8}$ | |
| $\dfrac{\pi^2+8\pi-8}{8}$ | |
| $\dfrac{\pi^2+8\pi-2}{8}$ | |
| $\dfrac{3\pi^2+2\pi-3}{8}$ |
Cho hàm số bậc bốn $f(x)=ax^4+bx^3+cx^2+dx+e$ có đồ thị như hình vẽ.
Số nghiệm của phương trình $f\big(f(x)\big)+1=0$ là
| $3$ | |
| $5$ | |
| $4$ | |
| $6$ |