Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

C

Cho khối lập phương có cạnh bằng $2$. Thể tích của khối lập phương đã cho bằng

$6$
$8$
$\dfrac{8}{3}$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho số phức $z=2+9i$, phần thực của số phức $z^2$ bằng

$-77$
$4$
$36$
$85$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, góc giữa hai mặt phẳng $(Oxy)$ và $(Oyz)$ bằng

$30^{\circ}$
$45^{\circ}$
$60^{\circ}$
$90^{\circ}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+y^2+z^2-2x-4y-6z+1=0$. Tâm của $(S)$ có tọa độ là

$(-1;-2;-3)$
$(2;4;6)$
$(-2;-4;-6)$
$(1;2;3)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

$y=x^4-3x^2+2$
$y=\dfrac{x-3}{x-1}$
$y=x^2-4x+1$
$y=x^3-3x-5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nếu $\displaystyle\displaystyle\int_{-1}^4f(x)\mathrm{\,d}x=2$ và $\displaystyle\displaystyle\int_{-1}^4g(x)\mathrm{\,d}x=3$ thì $\displaystyle\displaystyle\int_{-1}^4\big[f(x)+g(x)\big]\mathrm{\,d}x$ bằng

$5$
$6$
$1$
$-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

$(0;-2)$
$(2;0)$
$(-2;0)$
$(0;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, mặt phẳng $(P)\colon x+y+z+1=0$ có một vectơ pháp tuyến là

$\overrightarrow{n_1}=(-1;1;1)$
$\overrightarrow{n_4}=(1;1;-1)$
$\overrightarrow{n_3}=(1;1;1)$
$\overrightarrow{n_2}=(1;-1;1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho cấp số nhân $\big(u_n\big)$ với $u_1=2$ và công bội $q=\dfrac{1}{2}$. Giá trị của $u_3$ bằng

$3$
$\dfrac{1}{2}$
$\dfrac{1}{4}$
$\dfrac{7}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập nghiệm của bất phương trình $2^{x+1}< 4$ là

$(-\infty;1]$
$(1;+\infty)$
$[1;+\infty)$
$(-\infty;1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y=x^{\pi}$ là

$y'=\pi x^{\pi-1}$
$y'=x^{\pi-1}$
$y'=\dfrac{1}{\pi}x^{\pi-1}$
$y'=\pi x^{\pi}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y=\log_3x$ là

$y'=\dfrac{1}{x}$
$y'=\dfrac{1}{x\ln3}$
$y'=\dfrac{\ln3}{x}$
$y'=-\dfrac{1}{x\ln3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trên mặt phẳng tọa độ, điểm biểu diễn số phức $z=7-6i$ có tọa độ là

$(-6;7)$
$(6;7)$
$(7;6)$
$(7;-6)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Một mảnh vườn hình elip có độ dài trục lớn $8$m và độ dài trục nhỏ $6$m. Người ta cần trồng rau trên dải đất rộng $4$m như hình vẽ.

Hỏi cần bao nhiêu tiền để trồng rau trên dải đất đó, biết rằng kinh phí trồng rau là $70000$ đồng/m$^2$?

$1.607.107$ đồng
$803.553$ đồng
$267.851$ đồng
$2.638.938$ đồng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm $m$ để phương trình $(m-2)x^2+3mx+m^2-4m+3=0$ có hai nghiệm trái dấu.

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Giải bất phương trình $\dfrac{1}{x-1}+\dfrac{2}{x-2}>0$.

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tiệm cận ngang của đồ thị hàm số $y=3^x$ và tiệm cận đứng của đồ thị hàm số $y=\log_2x$ lần lượt có phương trình là

$y=3$ và $x=0$
$x=0$ và $y=0$
$y=0$ và $x=2$
$y=0$ và $x=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian với hệ tọa độ $Oxyz$, cho điểm $I(1;-1;2)$ và mặt phẳng $(P)$ có phương trình $x+3y-z+2=0$.

  1. Viết phương trình mặt cầu $(S)$ tâm $I$, tiếp xúc với mặt phẳng $(P)$.
  2. Tìm tọa độ tiếp điểm của mặt cầu $(S)$ và mặt phẳng $(P)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm hai số thực $x,\,y$ thỏa mãn $(2x-y)i+y(1-2i)^2=3+7i$.

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính tích phân $\displaystyle\int\limits_{1}^{2}\left(x^2+4x+\dfrac{4}{x^2}\right)\mathrm{\,d}x$.

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự