Ngân hàng bài tập

Toán học

S

Cho $\displaystyle\displaystyle\int\limits_0^1\dfrac{\mathrm{d}x}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)$ với $a$, $b$ là các số dương. Giá trị của biểu thức $T=a+b$ là

$10$
$7$
$6$
$8$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$ cho điểm $P(2;-3;1)$. Gọi $A$, $B$, $C$ lần lượt là hình chiếu vuông góc của điểm $P$ trên ba trục tọa độ $Ox$, $Oy$ và $Oz$. Phương trình mặt phẳng đi qua ba điểm $A$, $B$, $C$ là

$\dfrac{x}{2}+\dfrac{y}{3}+\dfrac{z}{1}=1$
$2x-3y+z=1$
$3x-2y+6z=1$
$3x-2y+6z-6=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho hai đường thẳng $\left(d_1\right)\colon\begin{cases} x=1+2t\\ y=2+3t\\ z=3+4t \end{cases}$ ($t\in\mathbb{R}$) và $\left(d_2\right)\colon\dfrac{x-3}{4}=\dfrac{y-5}{6}=\dfrac{z-7}{8}$. Khẳng định nào đúng?

$\left(d_1\right)\parallel\left(d_2\right)$
$\left(d_1\right)\equiv(\left(d_2\right)$
$\left(d_1\right)\perp\left(d_2\right)$
$\left(d_1\right),\,\left(d_2\right)$ chéo nhau
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Có bao nhiêu số phức $z$ thỏa mãn $z^2+2\overline{z}=0$?

$0$
$1$
$2$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho hai điểm $A(2;2;-1)$, $B(-4;2;-9)$. Phương trình mặt cầu có đường kính $AB$ là

$(x+3)^2+y^2+(z+4)^2=5$
$(x+1)^2+(y-2)^2+(z+5)^2=25$
$(x+2)^2+(y-4)^2+(z+10)^2=25$
$(x+1)^2+(y-2)^2+(z+5)^2=5$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết phương trình $z^2+2z+m=0$ ($m\in\mathbb{R}$) có một nghiệm là $z_1=-1+3i$. Gọi $z_2$ là nghiệm còn lại. Phần ảo của số phức $w=z_1-2z_2$ bằng

$1$
$-3$
$9$
$-9$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Diện tích hình phẳng giới hạn bởi hai parabol $y=x^2+3x-1$ và $y=-x^2+x+3$ được tô đậm trong hình bên có giá trị bằng

$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(4x+2\right)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(2x^2+2x-4\right)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(4-2x-2x^2\right)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(-4x-2\right)\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Bằng cách đổi biến số $t=1+\ln x$ thì tích phân $\displaystyle\displaystyle\int\limits_1^\mathrm{e}\dfrac{(1+\ln x)^2}{x}\mathrm{\,d}x$ trở thành

$\displaystyle\displaystyle\int\limits_1^\mathrm{e}t^2\mathrm{\,d}t$
$\displaystyle\displaystyle\int\limits_1^2t^2\mathrm{\,d}t$
$\displaystyle\displaystyle\int\limits_1^4t^2\mathrm{\,d}t$
$\displaystyle\displaystyle\int\limits_1^2(1+t)^2\mathrm{\,d}t$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\begin{cases} x=1+t\\ y=a-2t\\ z=bt \end{cases}$ $(t\in\mathbb{R})$ nằm trong mặt phẳng $(P)\colon x+y-z-2=0$. Tổng $a+b$ có giá trị là

$-3$
$-1$
$1$
$0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Có bao nhiêu số nguyên $a\in(1;17)$ sao cho $\displaystyle\displaystyle\int\limits_1^5\dfrac{\mathrm{d}x}{2x-1}>\ln\left(\dfrac{a}{2}\right)$?

$4$
$9$
$15$
$0$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Gọi $z,\,w$ là các số phức có điểm biểu diễn lần lượt là $M$ và $N$ trên mặt phẳng $Oxy$ như hình minh họa bên.

Phần ảo của số phức $\dfrac{z}{w}$ là

$\dfrac{14}{17}$
$3$
$-\dfrac{5}{17}$
$-\dfrac{1}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, phương trình chính tắc của đường thẳng $(d)\colon\begin{cases}x=1-2t\\ y=3t\\ z=2+t\end{cases}$ là

$\dfrac{x-1}{1}=\dfrac{y}{3}=\dfrac{z+2}{2}$
$\dfrac{x+1}{1}=\dfrac{y}{3}=\dfrac{z-2}{2}$
$\dfrac{x-1}{-2}=\dfrac{y}{3}=\dfrac{z-2}{1}$
$\dfrac{x+1}{-2}=\dfrac{y}{3}=\dfrac{z+2}{1}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho số phức $z=a+bi$ với $a,\,b$ là các số thực. Khẳng định nào đúng?

$z+\overline{z}=2bi$
$z-\overline{z}=2a$
$z\cdot\overline{z}=a^2-b^2$
$\left|z\right|=\left|\overline{z}\right|$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho hình hộp chữ nhật $OABC.O'A'B'C'$ có ba đỉnh $A,\,C,\,O'$ lần lượt nằm trên ba tia $Ox$, $Oy$, $Oz$ và có ba cạnh $OA=6$, $OC=8$, $OO'=5$ (tham khảo hình minh họa).

Điểm $B'$ có tọa độ là

$(8;6;5)$
$(5;6;8)$
$(6;5;8)$
$(6;8;5)$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho ba số phức $z_1=4-3i$, $z_2=(1+2i)i$, $z_3=\dfrac{1-i}{1+i}$ có điểm biểu diễn trên mặt phẳng $Oxy$ lần lượt là $A$, $B$, $C$. Số phức nào dưới đây có điểm biểu diễn là điểm $D$ thỏa mãn $ABCD$ là hình bình hành?

$6-5i$
$2-5i$
$4-2i$
$-6-4i$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $A(3;1;-1)$ và vuông góc với mặt phẳng $(P)\colon2x-y+2z-5=0$ là

$\dfrac{x+3}{2}=\dfrac{y+1}{-1}=\dfrac{z-1}{2}$
$\dfrac{x-2}{3}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$
$\dfrac{x-3}{2}=\dfrac{y-1}{1}=\dfrac{z+1}{2}$
$\dfrac{x-3}{2}=\dfrac{y-1}{-1}=\dfrac{z+1}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cặp số $(x;y)$ nào dưới đây thỏa đẳng thức $(3x+2yi)+(2+i)=2x-3i$?

$(-2;-1)$
$(-2;-2)$
$(2;-2)$
$(2;-1)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, khoảng cách từ điểm $M(2;-3;0)$ đến mặt phẳng $(P)\colon x+5y-2z+1=0$ bằng

$\dfrac{2\sqrt{30}}{5}$
$12$
$\dfrac{13}{\sqrt{30}}$
$\sqrt{30}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Ký hiệu $z$, $w$ là hai nghiệm phức của phương trình $2x^2-4x+9=0$. Giá trị của $P=\dfrac{1}{z}+\dfrac{1}{w}$ là

$-\dfrac{4}{9}$
$-\dfrac{9}{4}$
$\dfrac{4}{9}$
$\dfrac{9}{8}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $y=2^x$ có đồ thị là đường cong trong hình bên.

Diện tích $S$ của hình phẳng được tô đậm trong hình bằng

$S=\displaystyle\displaystyle\int\limits_{1}^{2}2^x\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{0}^{2}2^{2x}\mathrm{\,d}x$
$S=\pi\displaystyle\displaystyle\int\limits_{0}^{2}2^x\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{0}^{2}2^x\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự