Ngân hàng bài tập

Toán học

B

Một vật dao động điều hòa có phương trình quảng đường phụ thuộc thời gian $s=A\sin\left(\omega t+\varphi\right)$. Trong đó $A$, $\omega$, $\varphi$ là hằng số, $t$ là thời gian. Khi đó biểu thức vận tốc của vật là

$v=A\cos\left(\omega t+\varphi\right)$
$v=-A\omega\cos\left(\omega t+\varphi\right)$
$v=A\omega\cos\left(\omega t+\varphi\right)$
$v=-A\cos\left(\omega t+\varphi\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Một chất điểm chuyển động theo quy luật $s\left(t\right)=t^2-\dfrac{1}{6}t^3$ (m). Tìm thời điểm $t$ (giây) mà tại đó vận tốc $v$(m/s) của chuyển động đạt giá trị lớn nhất.

$t=2$
$t=0.5$
$t=2.5$
$t=1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho chuyển động thẳng xác định bởi phương trình $S=-t^3+3t^2+9t$, trong đó $t$ tính bằng giây và $S$ tính bằng mét. Tính vận tốc của chuyển động tại thời điểm gia tốc triệt tiêu.

$12\,\text{m/s}$
$0\,\text{m/s}$
$11\,\text{m/s}$
$6\,\text{m/s}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Một chất điểm chuyển động trong $20$ giây đầu tiên có phương trình $s\left(t\right)=\dfrac{1}{12}t^4-t^3+6t^2+10t$, trong đó $t>0$ với $t$ tính bằng giây $\left(s\right)$ và $s\left(t\right)$ tính bằng mét. Hỏi tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất thì vận tốc của vật bằng bao nhiêu?

$17$(m/s)
$18$(m/s)
$28$(m/s)
$13$(m/s)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một chuyển động thẳng xác định bởi phương trình $s=t^3-3t^2+5t+2$, trong đó $t$ tính bằng giây và $s$ tính bằng mét. Gia tốc của chuyển động khi $t=3$ là

$24\text{m/s}^2$
$17\text{m/s}^2$
$14\text{m/s}^2$
$12\text{m/s}^2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Một vật chuyển động theo quy luật $s\left(t\right)=-\dfrac{1}{2}t^3+12t^2$, $t$ (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động, $s$ (mét) là quãng đường vật chuyển động trong $t$ giây. Tính vận tốc tức thời của vật tại thời điểm $t=10$ (giây).

$80$(m/s)
$70$(m/s)
$90$(m/s)
$100$(m/s)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Một chất điểm chuyển động theo quy luật $S=-\dfrac{1}{3}t^3+4t^2+\dfrac{2}{3}$ với $t$(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và $S$(mét) là quãng đường vật chuyển động trong thời gian đó. Hỏi trong khoảng thời gian $8$ giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của chất điểm là bao nhiêu?

$86$(m/s)
$16$(m/s)
$\dfrac{2}{3}$(m/s)
$43$(m/s)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một chuyển động xác định bởi phương trình $S\left(t\right)=t^3-3t^2-9t+2$. Trong đó $t$ được tính bằng giây, $S$ được tính bằng mét. Khẳng định nào sau đây đúng?

Vận tốc của chuyển động bằng $0$ khi $t=0$s hoặc $t=2$s
Gia tốc của chuyển động tại thời điểm $t=3$s là $12\text{m/s}^2$
Gia tốc của chuyển động bằng $0\text{m/s}^2$ khi $t=0$s
Vận tốc của chuyển động tại thời điểm $t=2$s là $v=18$m/s
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một chất điểm chuyển động theo quy luật $S\left(t\right)=1+3t^2-t^3$. Vận tốc của chuyển động đạt giá trị lớn nhất khi $t$ bằng

$t=2$
$t=1$
$t=3$
$t=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Một vật chuyển động theo quy luật $s=-\dfrac{1}{2}t^3+6t^2$ với $t$ (giây) là khoảng thời gian từ khi vật bắt đầu chuyển động và $s$ (mét) là quãng đường vật di chuyển trong thời gian đó. Hỏi trong khoảng thời gian $6$ giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất vật đạt được bằng bao nhiêu?

$24$(m/s)
$108$(m/s)
$64$(m/s)
$18$(m/s)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Một vật rơi tự do với phương trình chuyển động là $S=\dfrac{1}{2}gt^2$, trong đó $t$ tính bằng giây (s), $S$ tính bằng mét (m) và $g=9,8\text{m/s}^2$. Vận tốc của vật tại thời điểm $t=4$s là

$v=9,8\text{m/s}$
$v=78,4\text{m/s}$
$v=39,2\text{m/s}$
$v=19,6\text{m/s}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Một vật chuyển động theo quy luật $s=\dfrac{-1}{2}t^2+20t$ với $t$ (giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và $s$ (mét) là quãng đường vật đi được trong thời gian đó. Hỏi vận tốc tức thời của vật tại thời điểm $t=8$ giây bằng bao nhiêu?

$40\,\text{m/s}$
$152\,\text{m/s}$
$22\,\text{m/s}$
$12\,\text{m/s}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hàm số $y=f\left(x\right)$ liên tục trên $\mathbb{R}\setminus\left\{0;-1\right\}$ thỏa mãn điều kiện $f\left(1\right)=-2\ln2$ và $x\left(x+1\right)\cdot f'\left(x\right)+f\left(x\right)=x^2+x$. Giá trị $f\left(2\right)=a+b\ln3$, với $a,\,b\in\mathbb{Q}$. Tính $a^2+b^2$.

1 lời giải Sàng Khôn
Lời giải Tương tự

Tìm họ nguyên hàm của hàm số $\displaystyle\displaystyle\int\dfrac{2x+3}{2x^2-x-1}\mathrm{d}x$.

1 lời giải Sàng Khôn
Lời giải Tương tự

Hình chóp $S.ABCD$ có đáy là hình vuông cạnh $a$, $SA$ vuông góc với mặt phẳng $\left(ABCD\right)$ và $SA=2a$. Tính diện tích mặt cầu ngoại tiếp hình chóp $S.ABCD$.

2 lời giải Sàng Khôn
Lời giải Tương tự

Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{1}\left(3x^2+\mathrm{e}^x+\dfrac{1}{x+1}\right)\mathrm{d}x$.

1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, viết phương trình mặt phẳng đi qua ba điểm $A\left(1;1;4\right)$, $B\left(2;7;9\right)$, $C\left(0;9;13\right)$.

$2x+y+z+1=0$
$x-y+z-4=0$
$7x-2y+z-9=0$
$2x+y-z-2=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, mặt phẳng đi qua điểm $M\left(-1;-2;5\right)$ và vuông góc với hai mặt phẳng $x+2y-3z+1=0$ và $2x-3y+z+1=0$ có phương trình là

$x+y+z-2=0$
$2x+y+z-1=0$
$x+y+z+2=0$
$x-y+z-6=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt phẳng $\left(P\right)\colon2x-y-2z-4=0$ và điểm $A(-1;2;-2)$. Tính khoảng cách $\mathrm{d}$ từ $A$ đến mặt phẳng $\left(P\right)$.

$\mathrm{d}=\dfrac{4}{3}$
$\mathrm{d}=\dfrac{8}{9}$
$\mathrm{d}=\dfrac{2}{3}$
$\mathrm{d}=\dfrac{5}{9}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, mặt phẳng đi qua điểm $A\left(2;-3;-2\right)$ và có một vectơ pháp tuyến $\overrightarrow{n}=\left(2;-5;1\right)$ có phương trình là

$2x-5y+z-17=0$
$2x-5y+z+17=0$
$2x-5y+z-12=0$
$2x-3y-2z-18=0$
1 lời giải Sàng Khôn
Lời giải Tương tự