Ngân hàng bài tập

Toán học

A

Tìm \(m\) để đường thẳng \(y=x-m\) cắt đồ thị hàm số \(y=\dfrac{2x+1}{x+1}\) tại \(2\) điểm phân biệt.

\(m<-1\)
\(m>-5\)
\(m<-5\) hoặc \(m>-1\)
\(-5< m<-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm \(m\) để đường thẳng \(y=2x+m\) cắt đồ thị hàm số \(y=\dfrac{2x}{x+1}\) tại \(2\) điểm phân biệt.

\(m\in(-\infty;0)\cup(8;+\infty)\)
\(m\in(-\infty;0]\cup[8;+\infty)\)
\(m\in(0;8)\)
\(m\in[0;8]\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm các giá trị của tham số \(m\) để đường cong \(\left(\mathscr{C}\right)\colon y=x^3-3x+m\) cắt trục hoành tại \(3\) điểm phân biệt.

\(m\in(2;+\infty)\)
\(m\in(-2;2)\)
\(m\in\mathbb{R}\)
\(m\in(-\infty;-2)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm các giá trị của tham số \(m\) để phương trình \(x^3-12x+m-2=0\) có \(3\) nghiệm phân biệt.

\(m\in[-14;18]\)
\(m\in(-14;18)\)
\(m\in(-18;14)\)
\(\left[\begin{array}{l}m<-14\\ m>18\end{array}\right.\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho đồ thị \(\left(\mathscr{C}\right)\colon y=x^4-2x^2\). Đường thẳng nào sau đây cắt \(\left(\mathscr{C}\right)\) tại \(2\) điểm phân biệt?

\(y=0\)
\(y=1\)
\(y=-\dfrac{3}{2}\)
\(y=-\dfrac{1}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f(x)-2-m=0\) có \(3\) nghiệm phân biệt?

\(5\)
\(4\)
\(3\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(f(x)-1=m\) có đúng \(2\) nghiệm.

\(-2< m<-1\)
\(m=-2\) hoặc \(m\geq-1\)
\(m=-1\) hoặc \(m>0\)
\(m=-2\) hoặc \(m>-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(y=f(x)\) xác định trên \(\mathbb{R}\setminus\{0\}\), liên tục trên từng khoảng xác định và có bảng biến thiên như hình.

Tìm tập hợp các giá trị thực của tham số \(m\) để phương trình \(f(x)=m\) có \(3\) nghiệm phân biệt.

\([-2;2)\)
\((-2;2)\)
\((-2;2]\)
\([2;+\infty)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(y=f(x)\) xác định trên \(\mathbb{R}\setminus\{0\}\), liên tục trên từng khoảng xác định và có bảng biến thiên như hình.

Phương trình \(f(x)=m\) với \(m\in(-1;2)\) có bao nhiêu nghiệm?

\(3\)
\(1\)
\(0\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(f(x)-m=0\) có \(3\) nghiệm phân biệt.

\(-3\leq m\leq2\)
\(-3< m<2\)
\(-4\leq m\leq2\)
\(-4< m<2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Tập hợp các giá trị thực của tham số \(m\) để phương trình \(f(x)=m\) có đúng một nghiệm là

\((-\infty;-2)\cup(2;+\infty)\)
\((-\infty;-2]\cup[2;+\infty)\)
\((-2;2)\)
\([-2;2]\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Số nghiệm của phương trình \(f(x)+2=0\) là

\(2\)
\(0\)
\(1\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Đồ thị của \(f(x)\) cắt đường thẳng \(y=2021\) tại bao nhiêu điểm?

\(2\)
\(1\)
\(0\)
\(4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \(M\) và \(N\) là giao điểm của đồ thị hai hàm số \(y=x+1\) và \(y=\dfrac{2x+4}{x-1}\). Tìm hoành độ trung điểm \(I\) của đoạn thẳng \(MN\).

\(x_I=-\dfrac{5}{2}\)
\(x_I=2\)
\(x_I=\dfrac{5}{2}\)
\(x_I=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \(M\) và \(N\) là giao điểm của đồ thị hai hàm số \(y=x^4-2x^2+2\) và \(y=4-x^2\). Tọa độ trung điểm \(I\) của đoạn thẳng \(MN\) là

\((1;0)\)
\((0;2)\)
\((2;0)\)
\((0;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Điểm nào sau đây là điểm chung của parabol \(y=x^2-x+1\) và đường thẳng \(y=2x-1\)?

\(P(3;5)\)
\(N(2;3)\)
\(M(1;-1)\)
\(Q(0;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Số giao điểm của đường cong \(y=x^3-2x^2+2x+1\) và đường thẳng \(y=1-x\) bằng

\(0\)
\(2\)
\(1\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đồ thị của hai hàm số \(y=-x^3+3x^2+2x-1\) và \(y=3x^2-2x-1\) có tất cả bao nhiêu điểm chung?

\(1\)
\(2\)
\(0\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm tọa độ giao điểm \(M\) của đồ thị hàm số \(y=\dfrac{2x-1}{x+2}\) với trục tung.

\(M\left(\dfrac{1}{2};0\right)\)
\(M\left(0;2\right)\)
\(M\left(0;-\dfrac{1}{2}\right)\)
\(M\left(-\dfrac{1}{2};0\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đồ thị hàm số \(y=x^4+3x^2-4\) cắt trục hoành tại bao nhiêu điểm?

\(4\)
\(2\)
\(3\)
\(0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự