Ngân hàng bài tập

Toán học: Hàm số

C

Cho hàm số $y=\big(2x^2-1\big)^{\tfrac{1}{2}}$. Giá trị của hàm số đã cho tại điểm $x=2$ bằng

$3$
$\sqrt{7}$
$\sqrt{3}$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

$(-\infty;0)$
$(2;+\infty)$
$(0;+\infty)$
$(-1;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tiệm cận đứng của đồ thị hàm số $y=\dfrac{3x-1}{x-2}$ có phương trình là

$x=2$
$x=-2$
$x=3$
$x=\dfrac{1}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Số nghiệm thực của phương trình $f(x)=2$ là

$1$
$0$
$2$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Đạo hàm của hàm số $y=\log_2(x-1)$ là

$y'=\dfrac{x-1}{\ln2}$
$y'=\dfrac{1}{\ln2}$
$y'=\dfrac{1}{(x-1)\ln2}$
$y'=\dfrac{1}{x-1}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ và thỏa mãn $f(x)+x f'(x)=4x^3-6x^2$, $\forall x\in\mathbb{R}$. Diện tích hình phẳng giới hạn bởi các đường $y=f(x)$ và $y=f'(x)$ bằng

$\dfrac{7}{12}$
$\dfrac{45}{4}$
$\dfrac{1}{2}$
$\dfrac{71}{6}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$

$21$
$10$
$8$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$. Gọi $F(x)$ và $G(x)$ là hai nguyên hàm của $f(x)$ thỏa mãn $2F(3)+G(3)=9+2F(-1)+G(-1)$. Khi đó $\displaystyle\displaystyle\int\limits_0^2\big(x^2+f(3-2x)\big)\mathrm{\,d}x$ bằng

$\dfrac{25}{6}$
$\dfrac{7}{6}$
$\dfrac{43}{6}$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=(x+2)^2(x-1)^5\big(x^2-2(m-6)x+m\big)$ với mọi $x\in\mathbb{R}$. Số giá trị nguyên dương của tham số $m$ để hàm số đã cho có đúng một điểm cực trị là

$7$
$5$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nếu $\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x=5$ và $\displaystyle\displaystyle\int\limits_{0}^{1}g(x)\mathrm{\,d}x=4$ thì $\displaystyle\displaystyle\int\limits_{0}^{1}\big[f(x)-g(x)\big]\mathrm{\,d}x$ bằng

$54$
$20$
$9$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số $y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-6x+\dfrac{5}{6}$ đồng biến trên khoảng

$(3;+\infty)$
$(-\infty;3)$
$(-2;3)$
$(-2;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị nhỏ nhất của hàm số $y=x^3-3x^2$ trên đoạn $[1;5]$ bằng

$50$
$-4$
$-45$
$-2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Diện tích hình phẳng giới hạn bởi đồ thị của hàm số $y=x^5$, trục hoành và hai đường thẳng $x=-1$, $x=1$ bằng

$\dfrac{3}{2}$
$\dfrac{1}{3}$
$7$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tiệm cận đứng của đồ thị hàm số $y=\dfrac{2x-1}{x+1}$ là đường thẳng có phương trình

$y=-1$
$x=-1$
$y=2$
$x=2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị hàm số $y=\dfrac{x-4}{2x+2}$ cắt trục tung tại điểm có tung độ bằng

$\dfrac{1}{2}$
$-1$
$-2$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?

$y=-x^4+2x^2-3$
$y=-x^3+3x$
$y=x^4-2x^2-3$
$y=x^3-3x-3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập xác định của hàm số $y=\ln(2-x)$ là

$\mathscr{D}=\mathbb{R}$
$\mathscr{D}=(-\infty;2)$
$\mathscr{D}=(2;+\infty)$
$\mathscr{D}=\mathbb{R}\setminus\{2\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

$(-\infty;2)$
$(1;+\infty)$
$(1;3)$
$(-\infty;1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ bên.

Hàm số đã cho đạt cực tiểu tại điểm

$x=1$
$x=-2$
$x=2$
$x=3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Số điểm cực trị của hàm số đã cho bằng

$1$
$2$
$3$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự