Ngân hàng bài tập

Toán học: Hàm số

B

Cho $\displaystyle\displaystyle\int\limits_{4}^{9}f(x)\mathrm{d}x=10$. Tính tích phân $J=\displaystyle\displaystyle\int\limits_{0}^{1}f(5x+4)\mathrm{d}x$.

$J=2$
$J=10$
$J=50$
$J=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính thể tích $V$ của khối tròn xoay khi cho diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=2x-x^2$, trục $Ox$ quay quanh $Ox$.

$V=\dfrac{8\pi}{15}$
$V=\dfrac{32\pi}{15}$
$V=\dfrac{4\pi}{3}$
$V=\dfrac{16\pi}{15}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Công thức tính thể tích vật thể tròn xoay thu được khi cho hình phẳng (phần gạch sọc của hình vẽ) giới hạn bởi các đường $y=\sqrt{x+2}$, $Ox$, $x=1$ quay xung quanh trục $Ox$ là

$\pi\displaystyle\displaystyle\int\limits_{-2}^{1}(x+2)\mathrm{d}x$
$\pi\displaystyle\displaystyle\int\limits_{1}^{4}\sqrt[4]{x+2}\mathrm{d}x$
$\pi\displaystyle\displaystyle\int\limits_{-2}^{1}\sqrt{x+2}\mathrm{d}x$
$\pi\displaystyle\displaystyle\int\limits_{1}^{4}(x+2)\mathrm{d}x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Họ các nguyên hàm của hàm số $f(x)=\dfrac{2}{x+1}$ trên $\mathbb{R}\setminus\{-1\}$ là

$\dfrac{-2}{(x+1)^2}+C$
$2\ln|x+1|+C$
$-\dfrac{1}{2}\ln|x+1|+C$
$\dfrac{1}{(x+1)^2}+C$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính diện tích $S$ của hình phẳng giới hạn bởi đồ thị hàm số $y=x^2-4x$, $Ox$ và $x=0,\,x=2$.

$S=9$
$S=\dfrac{16}{3}$
$S=\dfrac{32}{3}$
$S=\dfrac{5}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $F(x)=x+\cos x$ là một nguyên hàm của hàm số $f(x)$. Mệnh đề nào sau đây đúng?

$f(x)=\dfrac{1}{2}x^2-\cos x$
$f(x)=1-\sin x$
$f(x)=1+\sin x$
$f(x)=\dfrac{1}{2}x^2+\sin x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi $S$ là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$ và trục hoành (phần gạch sọc như hình vẽ).

Mệnh đề nào sau đây là đúng?

$S=\displaystyle\displaystyle\int\limits_{a}^{c}f(x)\mathrm{d}x$
$S=\left|\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{b}^{c}f(x)\mathrm{d}x\right|$
$S=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{b}^{c}f(x)\mathrm{d}x$
$S=\displaystyle\displaystyle\int\limits_{a}^{c}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{d}x=10$. Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{1}\big[6f(x)\big]\mathrm{d}x$.

$I=\dfrac{10}{6}$
$I=60$
$I=6$
$I=16$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$, gọi $S$ là diện tích của hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$, trục hoành và hai đường thẳng $x=a,\,x=b$ $(a< b)$. Mệnh đề nào sau đây đúng?

$S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)\big|\mathrm{d}x$
$S=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x$
$S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}f^2(x)\mathrm{d}x$
$S=\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)\big|\mathrm{d}x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $f(x)$ và $g(x)$ là các hàm số liên tục trên đoạn $[a;b]$. Mệnh đề nào sau đây đúng?

$\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{d}x=-\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{a}^{b}g(x)\mathrm{d}x$
$\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{d}x=-\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{a}^{b}g(x)\mathrm{d}x$
$\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{d}x=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{a}^{b}g(x)\mathrm{d}x$
$\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{d}x=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{a}^{b}g(x)\mathrm{d}x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Một nguyên hàm $F(x)$ của hàm số $f(x)=3^x$ là

$F(x)=3^x\ln3-2022$
$F(x)=\dfrac{3^x}{\ln3}+2020x$
$F(x)=\dfrac{3^x}{\ln3}+2021$
$F(x)=3^x+2019$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai hàm số $f(x)$ và $g(x)$ liên tục trên đoạn $[1;5]$ sao cho $\displaystyle\displaystyle\int\limits_{1}^{5}f(x)\mathrm{d}x=2$ và $\displaystyle\displaystyle\int\limits_{1}^{5}g(x)\mathrm{d}x=6$. Giá trị của $\displaystyle\displaystyle\int\limits_{1}^{5}\big[g(x)+f(x)\big]\mathrm{d}x$ là

$4$
$8$
$6$
$-4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Họ nguyên hàm của hàm số $f(x)=x^2$ là

$x^3+C$
$\dfrac{1}{3}x^3+C$
$3x^3+C$
$2x+C$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Viết phương trình tiếp tuyến $\Delta$ của đồ thị hàm số $y=\sqrt{x}$, biết tiếp tuyến này vuông góc với đường thẳng $d\colon4x+y-1=0$.

1 lời giải Sàng Khôn
Lời giải Tương tự

Tính đạo hàm của các hàm số sau:

  1. $y=x^4+5x^3+2x+300$
  2. $y=(6x+5).\sin x$
  3. $y=\dfrac{2x-1}{x+4}$
  4. $y=\sqrt{1+x+3x^2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $y=f(x)=x^3$. Giải phương trình $f'(x)=3$.

$x=1,\,x=-1$
$x=1$
$x=-1$
$x=\pm3$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Điện lượng truyền trong dây dẫn có phương trình $Q=t^2$. Tính cường độ dòng điện tức thời tại thời điểm $t_0=5$ (giây).

$3$(A)
$25$(A)
$10$(A)
$2$(A)
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho $u=u(x)$ và $v=v(x)$. Mệnh đề nào sau đây là đúng?

$(u.v)^{\prime}=u'.v-u.v'$
$(u.v)^{\prime}=u'.v'$
$(u+v)^{\prime}=u'.v+u.v'$
$(u.v)^{\prime}=u'.v+u.v'$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=\dfrac{x-1}{x+2}$ tại điểm có tung độ bằng $2$.

$y=-\dfrac{1}{3}x+\dfrac{1}{3}$
$y=\dfrac{1}{3}x+\dfrac{11}{3}$
$y=\dfrac{1}{3}x-\dfrac{11}{3}$
$y=\dfrac{1}{3}x+\dfrac{1}{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Tính đạo hàm của hàm số $y=\sqrt{x+\cos x}$.

$y'=\dfrac{1+\sin x}{2\sqrt{x+\cos x}}$
$y'=\dfrac{1-\sin x}{\sqrt{x+\cos x}}$
$y'=\dfrac{1-\sin x}{2\sqrt{x+\cos x}}$
$y'=\dfrac{1-\sin x}{2\sqrt{x+\sin x}}$
1 lời giải Sàng Khôn
Lời giải Tương tự