Cho hàm số $y=f\left(x\right)$ có bảng biến thiên như hình bên.
Số nghiệm của phương trình $2f\left(x\right)-6=0$ là
| $3$ | |
| $0$ | |
| $4$ | |
| $2$ |
Diện tích $S$ của phần hình phẳng được gạch chéo trong hình bên bằng
| $S=\displaystyle\displaystyle\int\limits_0^3\left|\dfrac{1}{2}{x^2}+\left(x^2-7x+12\right)\right|\mathrm{d}x$ | |
| $S=\displaystyle\displaystyle\int\limits_0^2\dfrac{1}{2}{x^2}\rm{d}x-\displaystyle\displaystyle\int\limits_2^3\left(x^2-7x+12\right)\mathrm{d}x$ | |
| $S=\displaystyle\displaystyle\int\limits_0^2\dfrac{1}{2}{x^2}\mathrm{d}x+\displaystyle\displaystyle\int\limits_2^3\left(x^2-7x+12\right)\mathrm{d}x$ | |
| $S=\displaystyle\displaystyle\int\limits_0^3\left|\dfrac{1}{2}{x^2}-\left(x^2-7x+12\right)\right|\mathrm{d}x$ |
Xét tích phân $I=\displaystyle\displaystyle\int\limits_1^{\rm{e}^2}\dfrac{\left(1+2\ln x\right)^2}{x}\mathrm{\,d}x$, nếu đặt $t=1+2\ln{x}$ thì $I$ bằng
| $\dfrac{1}{2}\displaystyle\displaystyle\int\limits_1^{e^2}t^2\mathrm{\,d}t$ | |
| $2\displaystyle\displaystyle\int\limits_1^5t^2\mathrm{\,d}t$ | |
| $2\displaystyle\displaystyle\int\limits_1^{e^2}t^2\mathrm{\,d}t$ | |
| $\dfrac{1}{2}\displaystyle\displaystyle\int\limits_1^5t^2\mathrm{\,d}t$ |
Cho hàm số $f(x)$, biết $f'(x)$ có đồ thị như hình bên.
Số điểm cực trị của hàm số $f(x)$ là
| $2$ | |
| $1$ | |
| $3$ | |
| $0$ |
Giá trị lớn nhất của hàm số $f\left(x\right)=\dfrac{2x+5}{x-2}$ trên đoạn $\left[3;6\right]$ là
| $f\left(5\right)$ | |
| $f\left(4\right)$ | |
| $f\left(6\right)$ | |
| $ f\left(3\right)$ |
Cho hàm số $y=f\left(x\right)$ có bảng biến thiên như hình bên.
Số giao điểm của đồ thị hàm số $y=f\left(x\right)$ và trục hoành là
| $1$ | |
| $2$ | |
| $0$ | |
| $3$ |
Cho hàm số $y=f\left(x\right)$ có bảng biến thiên như hình bên.
Hàm số đã cho đạt cực tiểu tại
| $x=1$ | |
| $x=0$ | |
| $x=2$ | |
| $x=-2$ |
Khẳng định nào sau đây sai?
| $\displaystyle\displaystyle\int\sin x\mathrm{\,d}x=-\cos x+C$ | |
| $\displaystyle\displaystyle\int a^x\mathrm{\,d}x=a^x\ln{a}+C,\,\left(a>0,\,a\ne1\right)$ | |
| $\displaystyle\displaystyle\int\dfrac{1}{\cos^2x}\mathrm{\,d}x=\tan{x}+C$ | |
| $\displaystyle\displaystyle\int\dfrac{1}{x}\mathrm{\,d}x=\ln\left|x\right|+C$ |
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
| $y=-x^3+3x$ | |
| $y=-x^4+x^2$ | |
| $y=-x^3-3x^2$ | |
| $y=x^4+x^2$ |
Cho hàm số $y=f\left(x\right)$ có đồ thị như hình bên.
Hàm số đã cho đồng biến trên khoảng nào sau đây?
| $\left(0;2\right)$ | |
| $\left(2;+\infty\right)$ | |
| $\left(0;+\infty\right)$ | |
| $\left(-\infty;2\right)$ |
Tập xác định của hàm số $y=\ln\left(x+2\right)$ là
| $\left(-2;+\infty\right)$ | |
| $\left[-2;+\infty\right)$ | |
| $\left(0;+\infty\right)$ | |
| $\left(-\infty;2\right)$ |
Nếu $\displaystyle\displaystyle\int\limits_1^2f(x)\mathrm{\,d}x=5$ thì $\displaystyle\displaystyle\int\limits_2^1\pi f(x)\mathrm{\,d}x$ bằng
| $5\pi$ | |
| $\dfrac{\pi}{5}$ | |
| $-5\pi$ | |
| $-\dfrac{\pi}{5}$ |
Tiệm cận đứng của đồ thị hàm số $y=\dfrac{3x+2}{x-5}$ là
| $y=3$ | |
| $x=3$ | |
| $y=5$ | |
| $x=5$ |
Cho tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{1} x(1-x)^{2021}\mathrm{d}x$. Mệnh đề nào dưới đây đúng?
| $I=\displaystyle\displaystyle\int\limits_{0}^{1}t^{2021}(1-t)\mathrm{d}t$ | |
| $I=-\displaystyle\displaystyle\int\limits_{-1}^{1}\left(t^{2022}-t^{2021}\right)\mathrm{d}t$ | |
| $I=-\displaystyle\int\limits_{0}^{1} t^{2021}(1-t)\mathrm{d}t$ | |
| $I=-\displaystyle\int\limits_{-1}^{1}\left(t^{2022}-t^{2021}\right)\mathrm{d}t$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, thỏa mãn $f(x)+2f(2-x)=x^2-6x+4$. Tích phân $\displaystyle\displaystyle\int\limits_{-1}^3x f^{\prime}(x)\mathrm{d}x$ bằng
| $20$ | |
| $\dfrac{149}{3}$ | |
| $\dfrac{167}{3}$ | |
| $\dfrac{176}{9}$ |
Một xe lửa chuyển động chậm dần đều và dừng lại hẳn sau $20\mathrm{s}$ kể từ lúc bắt đầu hãm phanh. Trong thời gian đó xe chạy được $120\mathrm{m}$. Cho biết công thức tính vận tốc của chuyển động biến đổi đều là $v=v_0+at$; trong đó $a\,\left(\mathrm{m}/\mathrm{s}^2\right)$ là gia tốc, $v\,(\mathrm{m}/\mathrm{s})$ là vận tốc tại thời điểm $t~(s)$. Hãy tính vận tốc $v_{0}$ của xe lửa lúc bắt đầu hãm phanh.
| $30\mathrm{~m}/\mathrm{s}$ | |
| $45\mathrm{~m}/\mathrm{s}$ | |
| $6\mathrm{~m}/\mathrm{s}$ | |
| $12\mathrm{~m}/\mathrm{s}$ |
Tính thể tích $V$ của vật thể giới hạn bởi hai mặt phẳng $x=0,\,x=\pi$. Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với $Ox$ tại điểm có hoành độ $x\,(0\leq x\leq\pi)$ là một tam giác vuông cân có cạnh huyền bằng $\sin x+2$.
| $\dfrac{7\pi}{6}+1$ | |
| $\dfrac{9\pi}{8}+1$ | |
| $\dfrac{7\pi}{6}+2$ | |
| $\dfrac{9\pi}{8}+2$ |
Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ thỏa mãn $f^{\prime}(x)=\dfrac{1}{x-1}$, $f(3)=2021$. Tính $f(5)$.
| $f(5)=2020-\dfrac{1}{2}\ln2$ | |
| $f(5)=2021-\ln2$ | |
| $f(5)=2021+\ln2$ | |
| $f(5)=2020+\ln2$ |
Tính diện tích phần hình phẳng gạch chéo trong hình vẽ bên dưới.
| $1$ | |
| $\dfrac{7}{6}$ | |
| $\dfrac{5}{3}$ | |
| $\dfrac{7}{5}$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{d}x=2$ và $\displaystyle\displaystyle\int\limits_{0}^2f(3x+1)\mathrm{d}x=6$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{7}f(x)\mathrm{d}x$.
| $I=20$ | |
| $I=8$ | |
| $I=18$ | |
| $I=16$ |